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About this Manual
This preface provides general information concerning the scope and organization of this User’s 
Manual. 

Intended Audience
This manual is intended for system administrators responsible for the installation, configuration, 
management and maintenance of the software and hardware of VPI (InfiniBand, Ethernet) 
adapter cards. It is also intended for application developers.

Common Abbreviations and Acronyms

Table 2 - Abbreviations and Acronyms  (Sheet 1 of 2)

Abbreviation / Acronym Whole Word / Description

B (Capital) ‘B’ is used to indicate size in bytes or multiples of 
bytes (e.g., 1KB = 1024 bytes, and 1MB = 1048576 bytes)

b (Small) ‘b’ is used to indicate size in bits or multiples of bits 
(e.g., 1Kb = 1024 bits)

FW Firmware

HCA Host Channel Adapter

HW Hardware

IB InfiniBand

iSER iSCSI RDMA Protocol

LSB Least significant byte

lsb Least significant bit

MSB Most significant byte

msb Most significant bit

NIC Network Interface Card

SW Software

VPI Virtual Protocol Interconnect

IPoIB IP over InfiniBand

PFC Priority Flow Control

PR Path Record

RDS Reliable Datagram Sockets

RoCE RDMA over Converged Ethernet
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Glossary
The following is a list of concepts and terms related to InfiniBand in general and to Subnet Man-
agers in particular. It is included here for ease of reference, but the main reference remains the 
InfiniBand Architecture Specification.

SDP Sockets Direct Protocol

SL Service Level

SRP SCSI RDMA Protocol

MPI Message Passing Interface

EoIB Ethernet over Infiniband

QoS Quality of Service

ULP Upper Level Protocol

VL Virtual Lane

vHBA Virtual SCSI Host Bus adapter

uDAPL User Direct Access Programming Library

Table 3 - Glossary  (Sheet 1 of 2)

Channel Adapter 
(CA), Host Channel 
Adapter (HCA)

An IB device that terminates an IB link and executes transport 
functions. This may be an HCA (Host CA) or a TCA (Target 
CA).

HCA Card A network adapter card based on an InfiniBand channel 
adapter device.

IB Devices Integrated circuit implementing InfiniBand compliant commu-
nication.

IB Cluster/Fabric/
Subnet

A set of IB devices connected by IB cables.

In-Band A term assigned to administration activities traversing the IB 
connectivity only.

Local Identifier (ID) An address assigned to a port (data sink or source point) by the 
Subnet Manager, unique within the subnet, used for directing 
packets within the subnet.

Local Device/Node/
System

The IB Host Channel Adapter (HCA) Card installed on the 
machine running IBDIAG tools.

Table 2 - Abbreviations and Acronyms  (Sheet 2 of 2)

Abbreviation / Acronym Whole Word / Description
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Local Port The IB port of the HCA through which IBDIAG tools connect 
to the IB fabric.

Master Subnet Man-
ager

The Subnet Manager that is authoritative, that has the refer-
ence configuration information for the subnet. See Subnet 
Manager.

Multicast Forward-
ing Tables

A table that exists in every switch providing the list of ports to 
forward received multicast packet. The table is organized by 
MLID.

Network Interface 
Card (NIC)

A network adapter card that plugs into the PCI Express slot 
and provides one or more ports to an Ethernet network.

Standby Subnet Man-
ager

A Subnet Manager that is currently quiescent, and not in the 
role of a Master Subnet Manager, by agency of the master SM. 
See Subnet Manager.

Subnet Administra-
tor (SA)

An application (normally part of the Subnet Manager) that 
implements the interface for querying and manipulating subnet 
management data.

Subnet Manager 
(SM)

One of several entities involved in the configuration and con-
trol of the an IB fabric.

Unicast Linear For-
warding Tables 
(LFT)

A table that exists in every switch providing the port through 
which packets should be sent to each LID.

Virtual Protocol 
Interconnet (VPI)

A Mellanox Technologies technology that allows Mellanox 
channel adapter devices (ConnectX®) to simultaneously con-
nect to an InfiniBand subnet and a 10GigE subnet (each subnet 
connects to one of the adpater ports)

Table 3 - Glossary  (Sheet 2 of 2)
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Related Documentation
Table 4 - Reference Documents

Document Name Description

InfiniBand Architecture Specification, 
Vol. 1, Release 1.2.1

The  InfiniBand Architecture Specification that 
is provided by IBTA

IEEE Std 802.3ae™-2002
(Amendment to IEEE Std 802.3-2002)
Document # PDF: SS94996

Part 3: Carrier Sense Multiple Access with Colli-
sion Detection (CSMA/CD) Access Method and 
Physical Layer Specifications
Amendment: Media Access Control (MAC) 
Parameters, Physical Layers, and Management 
Parameters for 10 Gb/s Operation

Firmware Release Notes for Mellanox 
adapter devices

See the Release Notes PDF file relevant to your 
adapter device under
docs/ folder of installed package.

MFT User Manual Mellanox Firmware Tools User’s Manual. See 
under docs/ folder of installed package.

MFT Release Notes Release Notes for the Mellanox Firmware Tools. 
See under docs/ folder of installed package.

WinOF User Manual Mellanox WinOF User Manual describes instal-
lation, configuration and operation of Mellanox 
WinOF driver.

Support and Updates Webpage
Please visit http://www.mellanox.com > Products > InfiniBand/VPI Drivers > Linux SW/Drivers 
for downloads, FAQ, troubleshooting, future updates to this manual, etc.
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1 Introduction

1.1 Overview
Mellanox OFED is a single Virtual Protocol Interconnect (VPI) software stack which operates 
across all Mellanox network adapter solutions supporting 10, 20, 40 and 56 Gb/s InfiniBand (IB); 
10, 40 and 56 Gb/s Ethernet; and 2.5 or 5.0 GT/s PCI Express 2.0 and 8 GT/s PCI Express 3.0 
uplinks to servers.
All Mellanox network adapter cards are compatible with OpenFabrics-based RDMA protocols 
and software, and are supported with major operating system distributions.
Mellanox OFED is certified with the following products:
• Mellanox Messaging Accelerator (VMA™) software: Socket acceleration library that 

performs OS bypass for standard socket based applications.
• Mellanox Unified Fabric Manager (UFM®) software: Powerful platform for managing 

demanding scale-out computing fabric environments, built on top of the OpenSM 
industry standard routing engine. 

• Fabric Collective Accelerator (FCA) - FCA is a Mellanox MPI-integrated software 
package that utilizes CORE-Direct technology for implementing the MPI collectives 
communications.

1.2 Stack Architecture
Figure 1 shows a diagram of the Mellanox OFED stack, and how upper layer protocols (ULPs) 
interface with the hardware and with the kernel and user space. The application level also shows 
the versatility of markets that Mellanox OFED applies to.

Figure 1: Mellanox OFED Stack for ConnectX® Family Adapter Cards

The following sub-sections briefly describe the various components of the Mellanox OFED 
stack.
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1.2.1 mlx4 VPI Driver
mlx4 is the low level driver implementation for the ConnectX® family adapters designed by 
Mellanox Technologies. ConnectX® family adapters can operate as an InfiniBand adapter, or as 
an Ethernet NIC. The OFED driver supports InfiniBand and Ethernet NIC configurations. To 
accommodate the supported configurations, the driver is split into the following modules:

mlx4_core
Handles low-level functions like device initialization and firmware commands processing. Also 
controls resource allocation so that the InfiniBand and Ethernet functions can share the device 
without interfering with each other.

mlx4_ib
Handles InfiniBand-specific functions and plugs into the InfiniBand midlayer

mlx4_en
A 10/40GigE driver under drivers/net/ethernet/mellanox/mlx4 that handles Ethernet specific 
functions and plugs into the netdev mid-layer

1.2.2 mlx5 Driver
mlx5 is the low level driver implementation for the Connect-IB® adapters designed by Mellanox 
Technologies. Connect-IB® operates as an InfiniBand adapter. The mlx5 driver is comprised of 
the following kernel modules:

mlx5_core
Acts as a library of common functions (e.g. initializing the device after reset) required by the 
Connect-IB® adapter card.

mlx5_ib
Handles InfiniBand-specific functions and plugs into the InfiniBand midlayer.

libmlx5
libmlx5 is the provider library that implements hardware specific user-space functionality. If 
there is no compatibility between the firmware and the driver, the driver will not load and a mes-
sage will be printed in the dmesg.
The following are the Libmlx5 environment variables:
• MLX5_FREEZE_ON_ERROR_CQE

• Causes the process to hang in a loop when completion with error which is not flushed with 
error or retry exceeded occurs/

• Otherwise disabled
• MLX5_POST_SEND_PREFER_BF

• Configures every work request that can use blue flame will use blue flame
• Otherwise - blue flame depends on the size of the message and inline indication in the 

packet
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• MLX5_SHUT_UP_BF
• Disables blue flame feature
• Otherwise - do not disable

• MLX5_SINGLE_THREADED
• All spinlocks are disabled
• Otherwise - spinlocks enabled
• Used by applications that are single threaded and would like to save the overhead of taking 

spinlocks.
• MLX5_CQE_SIZE

• 64 - completion queue entry size is 64 bytes (default)
• 128 - completion queue entry size is 128 bytes

MLX5_SCATTER_TO_CQE
• Small buffers are scattered to the completion queue entry and manipulated by the driver. 

Valid for RC transport. 
• Default is 1, otherwise disabled.

1.2.3 Mid-layer Core
Core services include: management interface (MAD), connection manager (CM) interface, and 
Subnet Administrator (SA) interface. The stack includes components for both user-mode and 
kernel applications. The core services run in the kernel and expose an interface to user-mode for 
verbs, CM and management.

1.2.4 ULPs

IPoIB
The IP over IB (IPoIB) driver is a network interface implementation over InfiniBand. IPoIB 
encapsulates IP datagrams over an InfiniBand connected or datagram transport service. IPoIB 
pre-appends the IP datagrams with an encapsulation header, and sends the outcome over the 
InfiniBand transport service. The transport service is Unreliable Datagram (UD) by default, but it 
may also be configured to be Reliable Connected (RC). The interface supports unicast, multicast 
and broadcast. For details, see Chapter 3.2.5.1, “IP over InfiniBand (IPoIB)”.

iSER
iSCSI Extensions for RDMA (iSER) extends the iSCSI protocol to RDMA. It permits data to be 
transferred directly into and out of SCSI buffers without intermediate data copies. For further 
information, please refer to Chapter 3.3.2, “iSCSI Extensions for RDMA (iSER)”.

SRP
SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol offload and 
RDMA features provided by the InfiniBand architecture. SRP allows a large body of SCSI soft-
ware to be readily used on InfiniBand architecture. The SRP driver—known as the SRP Initia-
tor—differs from traditional low-level SCSI drivers in Linux. The SRP Initiator does not control 
a local HBA; instead, it controls a connection to an I/O controller—known as the SRP Target—to 
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provide access to remote storage devices across an InfiniBand fabric. The SRP Target resides in 
an I/O unit and provides storage services. See Chapter 3.3.1, “SCSI RDMA Protocol (SRP)”.

uDAPL
User Direct Access Programming Library (uDAPL) is a standard API that promotes data center 
application data messaging performance, scalability, and reliability over RDMA interconnects: 
InfiniBand and RoCE. The uDAPL interface is defined by the DAT collaborative. 
This release of the uDAPL reference implementation package for both DAT 1.2 and 2.0 specifi-
cation is timed to coincide with OFED release of the Open Fabrics (www.openfabrics.org) soft-
ware stack.
For more information about the DAT collaborative, go to the following site:
http://www.datcollaborative.org

1.2.5 MPI
Message Passing Interface (MPI) is a library specification that enables the development of paral-
lel software libraries to utilize parallel computers, clusters, and heterogeneous networks. Mella-
nox OFED includes the following MPI implementations over InfiniBand:
• Open MPI – an open source MPI-2 implementation by the Open MPI Project
• OSU MVAPICH – an MPI-1 implementation by Ohio State University
Mellanox OFED also includes MPI benchmark tests such as OSU BW/LAT, Intel MPI Bench-
mark, and Presta.

1.2.6 InfiniBand Subnet Manager
All InfiniBand-compliant ULPs require a proper operation of a Subnet Manager (SM) running on 
the InfiniBand fabric, at all times. An SM can run on any node or on an IB switch. OpenSM is an 
InfiniBand-compliant Subnet Manager, and it is installed as part of Mellanox OFED1. 

1.2.7 Diagnostic Utilities
Mellanox OFED includes the following two diagnostic packages for use by network and data-
center managers:
• ibutils – Mellanox Technologies diagnostic utilities
• infiniband-diags – OpenFabrics Alliance InfiniBand diagnostic tools

1.2.8 Mellanox Firmware Tools
The Mellanox Firmware Tools (MFT) package is a set of firmware management tools for a single 
InfiniBand node. MFT can be used for:
• Generating a standard or customized Mellanox firmware image
• Burning a firmware image to a single InfiniBand node
MFT includes the following tools:
• mlxburn - provides the following functions:

1. OpenSM is disabled by default. See Chapter 3.2.2, “OpenSM” for details on enabling it.
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• Generation of a standard or customized Mellanox firmware image for burning—in .bin 
(binary) or .img format

• Burning an image to the Flash/EEPROM attached to a Mellanox HCA or switch device
• Querying the firmware version loaded on an HCA board
• Displaying the VPD (Vital Product Data) of an HCA board

• flint
This tool burns a firmware binary image or an expansion ROM image to the Flash device of a 
Mellanox network adapter/bridge/switch device. It includes query functions to the burnt firm-
ware image and to the binary image file.

• Debug utilities
A set of debug utilities (e.g.,  itrace, fwtrace, mlxtrace, mlxdump, mstdump, mlxmcg, wqdump, 
mcra, mlxi2c, i2c, mget_temp, and pckt_drop)

For additional details, please refer to the MFT User’s Manual docs/.

1.3 Mellanox OFED Package

1.3.1 ISO Image
Mellanox OFED for Linux (MLNX_OFED_LINUX) is provided as ISO images or as a tarball, 
one per supported Linux distribution and CPU architecture, that includes source code and binary
RPMs, firmware, utilities, and documentation. The ISO image contains an installation script 
(called mlnxofedinstall) that performs the necessary steps to accomplish the following:
• Discover the currently installed kernel
• Uninstall any InfiniBand stacks that are part of the standard operating system distribu-

tion or another vendor's commercial stack
• Install the MLNX_OFED_LINUX binary RPMs (if they are available for the current 

kernel)
• Identify the currently installed InfiniBand HCAs and perform the required firmware 

updates

1.3.2 Software Components
MLNX_OFED_LINUX contains the following software components:
• Mellanox Host Channel Adapter Drivers

• mlx5, mlx4 (VPI), which is split into multiple modules:
• mlx4_core (low-level helper)
• mlx4_ib (IB)
• mlx5_ib
• mlx5_core
• mlx4_en (Ethernet)

• Mid-layer core
• Verbs, MADs, SA, CM, CMA, uVerbs, uMADs

•  Upper Layer Protocols (ULPs)
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• IPoIB, RDS*, SRP Initiator and SRP
* NOTE: RDS was not tested by Mellanox Technologies.

• MPI
• Open MPI stack supporting the InfiniBand, RoCE and Ethernet interfaces
• OSU MVAPICH stack supporting the InfiniBand and RoCE interfaces
• MPI benchmark tests (OSU BW/LAT, Intel MPI Benchmark, Presta)

• OpenSM: InfiniBand Subnet Manager
• Utilities

• Diagnostic tools
• Performance tests

• Firmware tools (MFT)
• Source code for all the OFED software modules (for use under the conditions men-

tioned in the modules' LICENSE files)
• Documentation

1.3.3 Firmware
The ISO image includes the following firmware items:
• Firmware images (.mlx format) for ConnectX®-3/ConnectX®-3 Pro/Connect-IB® net-

work adapters
• Firmware configuration (.INI) files for Mellanox standard network adapter cards and 

custom cards

1.3.4 Directory Structure
The ISO image of MLNX_OFED_LINUX contains the following files and directories:
• mlnxofedinstall - This is the MLNX_OFED_LINUX installation script.
• ofed_uninstall.sh - This is the MLNX_OFED_LINUX un-installation script.
• <RPMS folders> - Directory of binary RPMs for a specific CPU architecture.
• firmware/ - Directory of the Mellanox IB HCA firmware images  

(including Boot-over-IB)
• src/ - Directory of the OFED source tarball
• mlnx_add_kernel_support.sh - Script required to rebuild MLNX_OFED_LINUX for 

customized kernel version on supported Linux Distribution
• RPM based - A script required to rebuild MLNX_OFED_LINUX for customized kernel 

version on supported RPM based Linux Distribution
• docs/ - Directory of Mellanox OFED related documentation
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1.4 Module Parameters

1.4.1 mlx4 Module Parameters
In order to set mlx4 parameters, add the following line(s) to /etc/modprobe.conf: 

options mlx4_core parameter=<value>

and/or 
options mlx4_ib   parameter=<value>

and/or
options mlx4_en   parameter=<value>

The following sections list the available mlx4 parameters.

1.4.1.1 mlx4_ib Parameters
sm_guid_assign: Enable SM alias_GUID assignment if sm_guid_assign > 0 

(Default: 1) (int)

dev_assign_str1

1. In the current version, this parameter is using decimal number to describe the InfiniBand device and 
not hexadecimal number as it was in previous versions in order to uniform the mapping of device 
function numbers to InfiniBand device numbers as defined for other module parameters (e.g. num_vfs 
and probe_vf). 
For example to map mlx4_15 to device function number 04:00.0 in the current version we use 
“options mlx4_ib dev_assign_str=04:00.0-15” as opposed to the previous version in which we 
used “options mlx4_ib dev_assign_str=04:00.0-f”

: Map device function numbers to IB device numbers 
(e.g.'0000:04:00.0-0,002b:1c:0b.a-1,...').
Hexadecimal digits for the device function (e.g. 002b:1c:0b.a) 
and decimal for IB device numbers (e.g. 1). Max supported 
devices - 32 (string)

1.4.1.2 mlx4_core Parameters

set_4k_mtu: (Obsolete) attempt to set 4K MTU to all ConnectX ports (int)
debug_level: Enable debug tracing if > 0 (int)
msi_x: 0 - don't use MSI-X, 

1 - use MSI-X, 
>1 - limit number of MSI-X irqs to msi_x (non-SRIOV only) (int)

enable_sys_tune: Tune the cpu's for better performance (default 0) (int)
block_loopback: Block multicast loopback packets if > 0 (default: 1) (int)
num_vfs: Either a single value (e.g. '5') to define uniform num_vfs 

value for all devices functions or a string to map device func-
tion numbers to their num_vfs values (e.g. '0000:04:00.0-
5,002b:1c:0b.a-15').
Hexadecimal digits for the device function (e.g. 002b:1c:0b.a) 
and decimal for num_vfs value (e.g. 15). (string)
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probe_vf: Either a single value (e.g. '3') to indicate that the Hypervi-
sor driver itself should activate this number of VFs for each 
HCA on the host, or a string to map device function numbers to 
their probe_vf values (e.g. '0000:04:00.0-3,002b:1c:0b.a-13').
Hexadecimal digits for the device function (e.g. 002b:1c:0b.a) 
and decimal for probe_vf value (e.g. 13). (string)

log_num_mgm_entry_size: log mgm size, that defines the num of qp per mcg, for example: 
10 gives 248.range: 7 <= log_num_mgm_entry_size <= 12. To 
activate device managed flow steering when available, set to -
1 (int)

high_rate_steer: Enable steering mode for higher packet rate (default off) 
(int)

fast_drop: Enable fast packet drop when no recieve WQEs are posted (int)
enable_64b_cqe_eqe: Enable 64 byte CQEs/EQEs when the FW supports this if non-zero 

(default: 1) (int)
log_num_mac: Log2 max number of MACs per ETH port (1-7) (int)
log_num_vlan: (Obsolete) Log2 max number of VLANs per ETH port (0-7) (int)
log_mtts_per_seg: Log2 number of MTT entries per segment (0-7) (default: 0) (int)
port_type_array: Either pair of values (e.g. '1,2') to define uniform port1/

port2 types configuration for all devices functions or a 
string to map device function numbers to their pair of port 
types values (e.g. '0000:04:00.0-1;2,002b:1c:0b.a-1;1').
Valid port types: 1-ib, 2-eth, 3-auto, 4-N/A
If only a single port is available, use the N/A port type for 
port2 (e.g '1,4').

log_num_qp: log maximum number of QPs per HCA (default: 19) (int)
log_num_srq: log maximum number of SRQs per HCA (default: 16) (int)
log_rdmarc_per_qp: log number of RDMARC buffers per QP (default: 4) (int)
log_num_cq: log maximum number of CQs per HCA (default: 16) (int)
log_num_mcg: log maximum number of multicast groups per HCA (default: 13) 

(int)
log_num_mpt: log maximum number of memory protection table entries per HCA 

(default: 19) (int)
log_num_mtt: log maximum number of memory translation table segments per 

HCA (default: max(20, 2*MTTs for register all of the host mem-
ory limited to 30)) (int)

enable_qos: Enable Quality of Service support in the HCA (default: off) 
(bool)

internal_err_reset: Reset device on internal errors if non-zero (default is 1) 
(int)
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1.4.1.3 mlx4_en Parameters
inline_thold: Threshold for using inline data (int)

Default and max value is 104 bytes. Saves PCI read operation 
transaction, packet less then threshold size will be copied to 
hw buffer directly.

udp_rss: Enable RSS for incoming UDP traffic (uint)
On by default. Once disabled no RSS for incoming UDP traffic 
will be done.

pfctx: Priority based Flow Control policy on TX[7:0]. Per priority 
bit mask (uint)

pfcrx: Priority based Flow Control policy on RX[7:0]. Per priority 
bit mask (uint)

1.4.2 mlx5 Module Parameters
The mlx5_ib module supports a single parameter used to select the profile which defines the 
number of resources supported. The parameter name for selecting the profile is prof_sel.
The supported values for profiles are:
• 0 - for medium resources, medium performance
• 1 - for low resources
• 2 - for high performance (int) (default)

1.5 Device Capabilities
Normally, an application needs to query the device capabilities before attempting to create a 
resource. It is essential for the application to be able to operate over different devices with differ-
ent capabilities.
Specifically, when creating a QP, the user needs to specify the maximum number of outstanding 
work requests that the QP supports. This value should not exceed the queried capabilities. How-
ever, even when you specify a number that does not exceed the queried capability, the verbs can 
still fail since some other factors such as the number of scatter/gather entries requested, or the 
size of the inline data required, affect the maximum possible work requests. Hence an application 
should try to decrease this size (halving is a good new value) and retry until it succeeds.
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2 Installation
This chapter describes how to install and test the Mellanox OFED for Linux package on a single 
host machine with Mellanox InfiniBand and/or Ethernet adapter hardware installed. 

2.1 Hardware and Software Requirements
Table 1 - Software and Hardware Requirements

Requirements Description

Platforms A server platform with an adapter card based on one of the following 
Mellanox Technologies’ InfiniBand HCA devices:
• MT25408 ConnectX®-2 (VPI, IB, EN) (firmware: fw-ConnectX2)
• MT27508 ConnectX®-3 (VPI, IB, EN) (firmware: fw-ConnectX3)
• MT4103 ConnectX®-3 Pro (VPI, IB, EN) (firmware: fw-

ConnectX3Pro)
• MT4113 Connect-IB® (IB) (firmware: fw-Connect-IB)
For the list of supported architecture platforms, please refer to the 
Mellanox OFED Release Notes file.

Required Disk Space 
for Installation

1GB

Device ID For the latest list of device IDs, please visit Mellanox website.

Operating System Linux operating system.
For the list of supported operating system distributions and kernels, 
please refer to the Mellanox OFED Release Notes file.

Installer Privileges The installation requires administrator privileges on the target 
machine.

2.2 Downloading Mellanox OFED
 Step 1. Verify that the system has a Mellanox network adapter (HCA/NIC) installed.

The following example shows a system with an installed Mellanox HCA:
# lspci -v | grep Mellanox
06:00.0 Network controller: Mellanox Technologies MT27500 Family [ConnectX-3]
Subsystem: Mellanox Technologies Device 0024

 Step 2. Download the ISO image to your host.
The image’s name has the format MLNX_OFED_LINUX-<ver>-<OS label><CPU 

arch>.iso. You can download it from http://www.mellanox.com > Products > Software> 
InfiniBand Drivers.

 Step 3. Use the md5sum utility to confirm the file integrity of your ISO image. Run the following 
command and compare the result to the value provided on the download page.

host1$ md5sum MLNX_OFED_LINUX-<ver>-<OS label>.iso
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2.3 Installing Mellanox OFED
The installation script, mlnxofedinstall, performs the following:
• Discovers the currently installed kernel
• Uninstalls any software stacks that are part of the standard operating system distribution 

or another vendor's commercial stack
• Installs the MLNX_OFED_LINUX binary RPMs (if they are available for the current 

kernel)
• Identifies the currently installed InfiniBand and Ethernet network adapters and automat-

ically1 upgrades the firmware
Usage

./mnt/mlnxofedinstall [OPTIONS]

The installation script removes all previously installed Mellanox OFED packages and re-installs 
from scratch. You will be prompted to acknowledge the deletion of the old packages.

Pre-existing configuration files will be saved with the extension “.conf.rpmsave”.

• If you need to install Mellanox OFED on an entire (homogeneous) cluster, a common 
strategy is to mount the ISO image on one of the cluster nodes and then copy it to a 
shared file system such as NFS. To install on all the cluster nodes, use cluster-aware 
tools (such as pdsh).

• If your kernel version does not match with any of the offered pre-built RPMs, you can 
add your kernel version by using the “mlnx_add_kernel_support.sh” script located 
under the docs/ directory.

On Redhat and SLES distributions with errata kernel installed there is no need to use the 
mlnx_add_kernel_support.sh script. The regular installation can be performed and weak-
updates mechanism will create symbolic links to the MLNX_OFED kernel modules. 

The “mlnx_add_kernel_support.sh” script can be executed directly from the mlnxofedinstall 
script. For further information, please see '--add-kernel-support' option below.

On Ubuntu and Debian distributions drivers installation use Dynamic Kernel Module 
Support (DKMS) framework. Thus, the drivers' compilation will take place on the host 
during MLNX_OFED installation.  
Therefore, using "mlnx_add_kernel_support.sh" is irrelevant on Ubuntu and 
Debian distributions.

1. The firmware will not be updated if you run the install script with the ‘--without-fw-update’ option.
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Example
The following command will create a MLNX_OFED_LINUX ISO image for RedHat 6.3 under 
the /tmp directory.

# ./MLNX_OFED_LINUX-x.x-x-rhel6.3-x86_64/mlnx_add_kernel_support.sh -m /tmp/
MLNX_OFED_LINUX-x.x-x-rhel6.3-x86_64/ --make-tgz
Note: This program will create MLNX_OFED_LINUX TGZ for rhel6.3 under /tmp directory.
All Mellanox, OEM, OFED, or Distribution IB packages will be removed.
Do you want to continue?[y/N]:y
See log file /tmp/mlnx_ofed_iso.21642.log

Building OFED RPMs. Please wait...
Removing OFED RPMs...
Created /tmp/MLNX_OFED_LINUX-x.x-x-rhel6.3-x86_64-ext.tgz

• The script adds the following lines to /etc/security/limits.conf for the userspace 
components such as MPI:
• * soft memlock unlimited
• * hard memlock unlimited

• These settings set the amount of memory that can be pinned by a user space application to unlimited. If 
desired, tune the value unlimited to a specific amount of RAM.

For your machine to be part of the InfiniBand/VPI fabric, a Subnet Manager must be running on 
one of the fabric nodes. At this point, Mellanox OFED for Linux has already installed the 
OpenSM Subnet Manager on your machine. 

2.3.1 Installation Procedure
 Step 1. Login to the installation machine as root.
 Step 2. Mount the ISO image on your machine

host1# mount -o ro,loop MLNX_OFED_LINUX-<ver>-<OS label>-<CPU arch>.iso /mnt

 Step 3. Run the installation script.
./mnt/mlnxofedinstall
Logs dir: /tmp/MLNX_OFED_LINUX-x.x-x.logs
This program will install the MLNX_OFED_LINUX package on your machine.
Note that all other Mellanox, OEM, OFED, or Distribution IB packages will be removed.
Uninstalling the previous version of MLNX_OFED_LINUX

Starting MLNX_OFED_LINUX-x.x.x installation ...
........
........
Installation finished successfully.

Attempting to perform Firmware update...
Querying Mellanox devices firmware ...
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In case your machine has the latest firmware, no firmware update will occur and the 
installation script will print at the end of installation a message similar to the follow-
ing:
Device #1:
----------
  Device Type:      ConnectX3Pro
  Part Number:      MCX354A-FCC_Ax
  Description:      ConnectX-3 Pro VPI adapter card; dual-port 
QSFP; FDR IB (56Gb/s) and 40GigE;PCIe3.0 x8 8GT/s;RoHS R6
  PSID:             MT_1090111019
  PCI Device Name:  0000:05:00.0
  Versions:         Current        Available
     FW             2.31.5000      2.31.5000
     PXE            3.4.0224       3.4.0224
  Status:        Up to date

In case your machine has an unsupported network adapter device, no firmware update 
will occur and the error message below will be printed. Please contact your hardware 
vendor for help on firmware updates.
Error message:
Device #1:
----------
  Device:        0000:05:00.0
  Part Number:               
  Description:               
  PSID:          MT_0DB0110010
  Versions:      Current        Available
     FW          2.9.1000       N/A
  Status:        No matching image found

 Step 4. Reboot the machine if the installation script performed firmware updates to your network 
adapter hardware. Otherwise, restart the driver by running: "/etc/init.d/openibd 
restart"

 Step 5. (InfiniBand only) Run the hca_self_test.ofed utility to verify whether or not the 
InfiniBand link is up. The utility also checks for and displays additional information such as
• HCA firmware version
• Kernel architecture
• Driver version
• Number of active HCA ports along with their states
• Node GUID

For more details on hca_self_test.ofed, see the file hca_self_test.readme
under docs/.

After the installer completes, information about the Mellanox OFED installation such as prefix, 
kernel version, and installation parameters can be retrieved by running the command /etc/
infiniband/info.
Most of the Mellanox OFED components can be configured or reconfigured after the installation 
by modifying the relevant configuration files. See the relevant chapters in this manual for details.
The list of the modules that will be loaded automatically upon boot can be found in the /etc/
infiniband/openib.conf file.
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2.3.2 Installation Results

Software • Most of MLNX_OFED packages are installed under the “/usr” directory 
except for the following packages which are installed under the “/opt” direc-
tory:
• openshmem, bupc, fca and ibutils 

• The kernel modules are installed under
• /lib/modules/`uname -r`/updates on SLES and Fedora Distributions
• /lib/modules/`uname -r`/extra/mlnx-ofa_kernel on RHEL and other RedHat like 

Distributions
• /lib/modules/`uname -r`/updates/dkms/ on Ubuntu

Firmware • The firmware of existing network adapter devices will be updated if the fol-
lowing two conditions are fulfilled:
• The installation script is run in default mode; that is, without the option ‘--without-

fw-update’
• The firmware version of the adapter device is older than the firmware version 

included with the Mellanox OFED ISO image 
Note: If an adapter’s Flash was originally programmed with an Expansion ROM 
image, the automatic firmware update will also burn an Expansion ROM image.

• In case your machine has an unsupported network adapter device, no firmware 
update will occur and the error message below will be printed.  
-I- Querying device ... 
-E- Can't auto detect fw configuration file: ... 
Please contact your hardware vendor for help on firmware updates.

2.3.3 Installation Logging
While installing MLNX_OFED, the install log for each selected package will be saved in a sepa-
rate log file.
The path to the directory containing the log files will be displayed after running the installation 
script in the following format: "Logs dir: /tmp/MLNX_OFED_LINUX-<version>.<PID>.logs".
Example:

Logs dir: /tmp/MLNX_OFED_LINUX-x.x-x.logs

2.3.4 openibd Script
As of MLNX_OFED v2.2-1.0.0 the openibd script supports pre/post start/stop scripts:
This can be controlled by setting the variables below in the /etc/infiniband/openibd.conf
file.

OPENIBD_PRE_START
OPENIBD_POST_START
OPENIBD_PRE_STOP
OPENIBD_POST_STOP

Example:
OPENIBD_POST_START=/sbin/openibd_post_start.sh
Mellanox Technologies26



Rev 2.3-1.0.1
2.3.5 mlnxofedinstall Return Codes
Table 2 lists the mlnxofedinstall script return codes and their meanings.

Table 2 - mlnxofedinstall Return Codes

Return Code Meaning

0 The Installation ended successfully

1 The installation failed

2 No firmware was found for the adapter device

22 Invalid parameter

28 Not enough free space

171 Not applicable to this system configuration. This can occur 
when the required hardware is not present on the system.

172 Prerequisites are not met. For example, missing the required 
software installed or the hardware is not configured correctly.

173 Failed to start the mst driver

2.4 Uninstalling Mellanox OFED
Use the script /usr/sbin/ofed_uninstall.sh to uninstall the Mellanox OFED package. 
The script is part of the ofed-scripts RPM.

2.5 Installing MLNX_OFED using YUM
This type of installation is applicable to RedHat/OEL, Fedora, XenServer Operating Systems.

2.5.1 Setting up MLNX_OFED YUM Repository
 Step 1. Log into the installation machine as root.
 Step 2. Mount the ISO image on your machine.

# mount -o ro,loop MLNX_OFED_LINUX-<ver>-<OS label>-<CPU arch>.iso /mnt

You can download it from http://www.mellanox.com > Products > Software> InfiniBand 
Drivers.

 Step 3. Download and install Mellanox Technologies GPG-KEY:
The key can be downloaded via the following link: 
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http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox
# wget http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox
--2014-04-20 13:52:30--  http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox
Resolving www.mellanox.com... 72.3.194.0
Connecting to www.mellanox.com|72.3.194.0|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1354 (1.3K) [text/plain]
Saving to: ?RPM-GPG-KEY-Mellanox?

100%[=================================================>] 1,354       --.-K/s   in 0s

2014-04-20 13:52:30 (247 MB/s) - ?RPM-GPG-KEY-Mellanox? saved [1354/1354]

 Step 4. Install the key.
# sudo rpm --import RPM-GPG-KEY-Mellanox
warning: rpmts_HdrFromFdno: Header V3 DSA/SHA1 Signature, key ID 6224c050: NOKEY
Retrieving key from file:///repos/MLNX_OFED/<MLNX_OFED file>/RPM-GPG-KEY-Mellanox
Importing GPG key 0x6224C050:
 Userid: "Mellanox Technologies (Mellanox Technologies - Signing Key v2) <support@mel-
lanox.com>"
 From  : /repos/MLNX_OFED/<MLNX_OFED file>/RPM-GPG-KEY-Mellanox
Is this ok [y/N]:

 Step 5. Check that the key was successfully imported.
# rpm -q gpg-pubkey --qf '%{NAME}-%{VERSION}-%{RELEASE}\t%{SUMMARY}\n' | grep Mellanox
gpg-pubkey-a9e4b643-520791ba    gpg(Mellanox Technologies <support@mellanox.com>)

 Step 6. Install the createrepo.rpm package.
# yum install createrepo

 Step 7. MLNX_OFED YUM repository using the "mlnx_create_yum_repo.sh" script located in 
the downloaded MLNX_OFED package.

# ./mlnx_create_yum_repo.sh --mlnx_ofed /mnt --target /repos
Creating MLNX_OFED_LINUX YUM Repository under /repos...
See log file /tmp/mlnx_yum.24250.log
comps file was not provided, going to build it...
Copying RPMS...
Building YUM Repository...
Creating YUM Repository settings file at: /tmp/mlnx_ofed.repo
Done.
Copy /tmp/mlnx_ofed.repo to /etc/yum.repos.d/ to use MLNX_OFED YUM Repository.

 Step 8. Copy the created YUM repository configuration file to /etc/yum.repos.d/.
# cp /tmp/mlnx_ofed.repo /etc/yum.repos.d/
Mellanox Technologies28



Rev 2.3-1.0.1
 Step 9. Check that the repository was successfully added.
# yum repolist
Loaded plugins: product-id, security, subscription-manager
This system is not registered to Red Hat Subscription Management. You can use subscrip-
tion-manager to register.
repo id repo name status
mlnx_ofed MLNX_OFED Repository            108
rpmforge RHEL 6Server - RPMforge.net - dag 4,597

repolist: 8,351

2.5.2 Installing MLNX_OFED using the YUM Tool
After setting up the YUM repository for MLNX_OFED package, perform the following:
 Step 1. View the available package groups by invoking:

# yum grouplist | grep MLNX_OFED
   MLNX_OFED ALL
   MLNX_OFED BASIC
   MLNX_OFED GUEST
   MLNX_OFED HYPERVISOR
   MLNX_OFED VMA
   MLNX_OFED VMA-ETH
   MLNX_OFED VMA-VPI

Where:
MLNX_OFED ALL Installs all available packages in MLNX_OFED.
MLNX_OFED BASIC Installs basic packages required for running Mellanox cards.
MLNX_OFED GUEST Installs packages required by guest OS.
MLNX_OFED HYPERVISOR Installs packages required by hypervisor OS.
MLNX_OFED VMA Installs packages required by VMA.
MLNX_OFED VMA-ETH Installs packages required by VMA to work over Ethernet.
MLNX_OFED VMA-VPI Installs packages required by VMA to support VPI.

 Step 2. Install the desired group.
# yum groupinstall 'MLNX_OFED ALL’
Loaded plugins: product-id, security, subscription-manager
This system is not registered to Red Hat Subscription Management. You can use subscrip-

tion-manager to register.
Setting up Group Process
Resolving Dependencies
--> Running transaction check
---> Package ar_mgr.x86_64 0:1.0-0.11.g22fff4a will be installed
...............
...............
  rds-devel.x86_64 0:2.0.6mlnx-1
  rds-tools.x86_64 0:2.0.6mlnx-1
  srptools.x86_64 0:0.0.4mlnx3-OFED.2.0.2.6.7.11.ge863cb7
Complete!

Installing MLNX_OFED using the YUM tool does not automatically update the firmware. 
To update the firmware to the version included in MLNX_OFED package, you can either:
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• Run the mlnxofedinstall script with the "--fw-update-only" flag
or

• Update the firmware to the latest version available on Mellanox Technologies’ Web site 
as described in section Section 2.7, “Updating Firmware After Installation”, on page 31.

2.5.3 Uninstalling Mellanox OFED using the YUM Tool
If MLNX_OFED was installed using the yum tool, then it can be uninstalled as follow:

yum groupremove '<group name>'1

1. The “<group name>” must be the same group name that was previously used to install 
MLNX_OFED.

2.6 Installing MLNX_OFED using apt-get
This type of installation is applicable to Debian and Ubuntu Operating Systems.

2.6.1 Setting up MLNX_OFED apt-get Repository
 Step 1. Log into the installation machine as root.
 Step 2. Extract the MLNX_OFED pacakge on a shared location in your network.

You can download it from http://www.mellanox.com > Products > Software> InfiniBand 
Drivers.

 Step 3. Create an apt-get repository configuration file called "/etc/apt/sources.list.d/
mlnx_ofed.list" with the following content:

deb file:/<path to extracted MLNX_OFED package> ./

 Step 4. Update the apt-get cache.
# sudo apt-get update

2.6.2 Installing MLNX_OFED using the apt-get Tool
After setting up the YUM repository for MLNX_OFED package, perform the following:
 Step 1. View the available package groups by invoking:

# apt-cache search mlnx-ofed-
    mlnx-ofed-all
    mlnx-ofed-basic
    mlnx-ofed-vma
    mlnx-ofed-vma-eth
    mlnx-ofed-vma-vpi

Where:
mlnx-ofed-all MLNX_OFED all installer package.
mlnx-ofed-basic MLNX_OFED basic installer package.
mlnx-ofed-vma MLNX_OFED vma installer package.
mlnx-ofed-vma-eth MLNX_OFED vma-eth installer package.
mlnx-ofed-vma-vpi MLNX_OFED vma-vpi installer package.
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 Step 2. Install the desired group.
apt-get install '<group name>'

Example:
apt-get install mlnx-ofed-all

2.6.3 Uninstalling Mellanox OFED using the apt-get Tool
Use the script /usr/sbin/ofed_uninstall.sh to uninstall the Mellanox OFED package. 
The script is part of the ofed-scripts RPM.

2.7 Updating Firmware After Installation
In case you ran the mlnxofedinstall script with the ‘--without-fw-update’ option and 
now you wish to (manually) update firmware on your adapter card(s), you need to perform the 
steps below. The following steps are also appropriate in case you wish to burn newer firmware 
that you have downloaded from Mellanox Technologies’ Web site (http://www.mellanox.com > 
Support > Firmware Download).
 Step 1. Start mst.

host1# mst start

 Step 2. Identify your target InfiniBand device for firmware update.
 1. Get the list of InfiniBand device names on your machine.

host1# mst status
MST modules:
------------
    MST PCI module loaded
    MST PCI configuration module loaded
    MST Calibre (I2C) module is not loaded

MST devices:
------------
/dev/mst/mt25418_pciconf0        - PCI configuration cycles access.
                                   bus:dev.fn=02:00.0 addr.reg=88 
                                   data.reg=92
                                   Chip revision is: A0
/dev/mst/mt25418_pci_cr0         - PCI direct access.
                                   bus:dev.fn=02:00.0 bar=0xdef00000 
                                   size=0x100000
                                   Chip revision is: A0
........

 2. Your InfiniBand device is the one with the postfix “_pci_cr0”. In the example listed 
above, this will be /dev/mst/mt25418_pci_cr0.

 Step 3. Burn firmware.
• Burn a firmware image from a .mlx file using the mlxburn utility (that is already installed on your 

machine) 
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The following command burns firmware onto the ConnectX® device with the device 
name obtained in the example of Step 2.

> flint -d /dev/mst/mt25418_pci_cr0 -i fw-25408-2_31_5050-MCX353A-FCA_A1.bin burn

 Step 4. Reboot your machine after the firmware burning is completed.

2.8 UEFI Secure Boot
All kernel modules included in MLNX_OFED for RHEL7 and SLES12 are signed with x.509 
key to support loading the modules when Secure Boot is enabled.

2.8.1 Enrolling Mellanox's x.509 Public Key On your Systems
In order to support loading MLNX_OFED drivers when an OS supporting Secure Boot boots on 
a UEFI-based system with Secure Boot enabled, the Mellanox x.509 public key should be added 
to the UEFI Secure Boot key database and loaded onto the system key ring by the kernel.
Follow these steps below to add the Mellanox's x.509 public key to your system:

Prior to adding the Mellanox's x.509 public key to your system, please make sure:
• the 'mokutil' package is installed on your system
• the system is booted in UEFI mode

 Step 1. Download the x.509 public key.
# wget http://www.mellanox.com/downloads/ofed/mlnx_signing_key_pub.der 

 Step 2. Add the public key to the MOK list using the mokutil utility.
You will be asked to enter and confirm a password for this MOK enrollment request.

# mokutil --import mlnx_signing_key_pub.der 

 Step 3. Reboot the system.
The pending MOK key enrollment request will be noticed by shim.efi and it will launch Mok-
Manager.efi to allow you to complete the enrollment from the UEFI console. You will need to 
enter the password you previously associated with this request and confirm the enrollment. Once 
done, the public key is added to the MOK list, which is persistent. Once a key is in the MOK list, 
it will be automatically propagated to the system key ring and subsequent will be booted when 
the UEFI Secure Boot is enabled.

To see what keys have been added to the system key ring on the current boot, install the 'keyutils' 
package and run: #keyctl list %:.system_keyring

2.8.2 Removing Signature from kernel Modules
The signature can be removed from a signed kernel module using the 'strip' utility which is pro-
vided by the 'binutils' package.

# strip -g my_module.ko

The strip utility will change the given file without saving a backup. The operation can be undo 
only by resigning the kernel module. Hence, we recommend backing up a copy prior to removing 
the signature.
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 To remove the signature from the MLNX_OFED kernel modules:
# rpm -qa | grep -E "kernel-ib|mlnx-ofa_kernel" | xargs rpm -ql | grep "\.ko$" | xargs 
strip -g

After the signature has been removed, a massage as the below will no longer be presented upon 
module loading:

"Request for unknown module key 'Mellanox Technologies signing key: 
61feb074fc7292f958419386ffdd9d5ca999e403' err -11"

However, please note that a similar message as the follwoing will still be presented:
"my_module: module verification failed: signature and/or required key missing - taint-
ing kernel"

This message is presented once, only for each boot for the first module that either has no signa-
ture or whose key is not in the kernel key ring. So it's much easier to miss this message. You 
won't see it on repeated tests where you unload and reload a kernel module until you reboot. 
There is no way to eliminate this message.

2.9 Performance Tuning
For further information on Linux performance, please refer to the Performance Tuning Guide for 
Mellanox Network Adapters. 
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3 Features Overview and Configuration

3.1 Ethernet Network

3.1.1 Interface

3.1.1.1 Port Type Management
ConnectX ports can be individually configured to work as InfiniBand or Ethernet ports. By 
default both ConnectX ports are initialized as InfiniBand ports. If you wish to change the port 
type use the connectx_port_config script after the driver is loaded.
Running “/sbin/connectx_port_config -s” will show current port configuration for all 
ConnectX devices.
Port configuration is saved in the file: /etc/infiniband/connectx.conf. This saved con-
figuration is restored at driver restart only if restarting via “/etc/init.d/openibd 
restart”.
Possible port types are:
• eth – Ethernet
• ib – Infiniband
• auto – Link sensing mode - Detect port type based on the attached network type. If no 

link is detected, the driver retries link sensing every few seconds.
The port link type can be configured for each device in the system at run time using the “/sbin/
connectx_port_config” script. This utility will prompt for the PCI device to be modified (if 
there is only one it will be selected automatically).
In the next stage the user will be prompted for the desired mode for each port. The desired port 
configuration will then be set for the selected device.

This utility also has a non-interactive mode:
/sbin/connectx_port_config [[-d|--device <PCI device ID>] -c|--conf <port1,port2>]"

Auto Sensing enables the NIC to automatically sense the link type (InfiniBand or Ethernet) based 
on the link partner and load the appropriate driver stack (InfiniBand or Ethernet).

For example, if the first port is connected to an InfiniBand switch and the second to Ethernet 
switch, the NIC will automatically load the first switch as InfiniBand and the second as Ethernet.
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Upon driver start up:
1. Sense the adapter card’s port type:

If a valid cable or module is connected (QSFP, SFP+, or SFP with EEPROM in the cable/mod-
ule):
• Set the port type to the sensed link type (IB/Ethernet)

Otherwise:
• Set the port type as default (Ethernet)

During driver run time:
•  Sense a link every 3 seconds if no link is sensed/detected
•  If sensed, set the port type as sensed

3.1.1.2 Counters
Counters are used to provide information about how well an operating system, an application, a 
service, or a driver is performing. The counter data helps determine system bottlenecks and fine-
tune the system and application performance. The operating system, network, and devices pro-
vide counter data that an application can consume to provide users with a graphical view of how 
well the system is performing.
The counter index is a QP attribute given in the QP context. Multiple QPs may be associated with 
the same counter set, If multiple QPs share the same counter its value represents the cumulative 
total.
• ConnectX®-3 supports 127 different counters which are allocated as follow:

• 4 counters reserved for PF - 2 counters for each port
• 2 counters reserved for VF - 1 counter for each port
• All other counters if exist are allocated by demand

• RoCE counters are available only through sysfs located under:
• # /sys/class/infiniband/mlx4_*/ports/*/counters/
• # /sys/class/infiniband/mlx4_*/ports/*/counters_ext/

• Physical Function can also read Virtual Functions' port counters through sysfs located 
under:
• # /sys/class/net/eth*/vf*_statistics/

To display the network device Ethernet statistics, you can run:
Ethtool -S <devname>

Counter Description

rx_packets Total packets successfully received.
rx_bytes Total bytes in successfully received packets.
rx_multicast_packets Total multicast packets successfully received.
rx_broadcast_packets Total broadcast packets successfully received.
rx_errors Number of receive packets that contained errors preventing them 

from being deliverable to a higher-layer protocol.
Mellanox Technologies 35



Features Overview and ConfigurationRev 2.3-1.0.1
rx_dropped Number of receive packets which were chosen to be discarded 
even though no errors had been detected to prevent their being 
deliverable to a higher-layer protocol.

rx_length_errors Number of received frames that were dropped due to an error in 
frame length

rx_over_errors Number of received frames that were dropped due to overflow
rx_crc_errors Number of received frames with a bad CRC that are not runts, 

jabbers, or alignment errors
rx_jabbers Number of received frames with a length greater than MTU octets 

and a bad CRC
rx_in_range_length_error Number of received frames with a length/type field value in the 

(decimal) range [1500:46] (42 is also counted for VLANtagged 
frames)

rx_out_range_length_error Number of received frames with a length/type field value in the 
(decimal) range [1535:1501]

rx_lt_64_bytes_packets Number of received 64-or-less-octet frames
rx_127_bytes_packets Number of received 65-to-127-octet frames
rx_255_bytes_packets Number of received 128-to-255-octet frames
rx_511_bytes_packets Number of received 256-to-511-octet frames
rx_1023_bytes_packets Number of received 512-to-1023-octet frames
rx_1518_bytes_packets Number of received 1024-to-1518-octet frames
rx_1522_bytes_packets Number of received 1519-to-1522-octet frames
rx_1548_bytes_packets Number of received 1523-to-1548-octet frames
rx_gt_1548_bytes_packets Number of received 1549-or-greater-octet frames

Counter Description

tx_packets Total packets successfully transmitted.
tx_bytes Total bytes in successfully transmitted packets.
tx_multicast_packets Total multicast packets successfully transmitted.
tx_broadcast_packets Total broadcast packets successfully transmitted.
tx_errors Number of frames that failed to transmit
tx_dropped Number of transmitted frames that were dropped 
tx_lt_64_bytes_packets Number of transmitted 64-or-less-octet frames
tx_127_bytes_packets Number of transmitted 65-to-127-octet frames
tx_255_bytes_packets Number of transmitted 128-to-255-octet frames
tx_511_bytes_packets Number of transmitted 256-to-511-octet frames
tx_1023_bytes_packets Number of transmitted 512-to-1023-octet frames
tx_1518_bytes_packets Number of transmitted 1024-to-1518-octet frames
tx_1522_bytes_packets Number of transmitted 1519-to-1522-octet frames

Counter Description
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tx_1548_bytes_packets Number of transmitted 1523-to-1548-octet frames
tx_gt_1548_bytes_packets Number of transmitted 1549-or-greater-octet frames

Counter Description

rx_prio_<i>_packets Total packets successfully received with priority i.
rx_prio_<i>_bytes Total bytes in successfully received packets with priority i.
rx_novlan_packets Total packets successfully received with no VLAN priority.
rx_novlan_bytes Total bytes in successfully received packets with no VLAN pri-

ority.
tx_prio_<i>_packets Total packets successfully transmitted with priority i.
tx_prio_<i>_bytes Total bytes in successfully transmitted packets with priority i.
tx_novlan_packets Total packets successfully transmitted with no VLAN priority.
tx_novlan_bytes Total bytes in successfully transmitted packets with no VLAN 

priority.

Counter Description

rx_pause_prio_<i> The total number of PAUSE frames received from the far-end 
port

rx_pause_duration_prio_<i
>

The total time in microseconds that far-end port was requested to 
pause transmission of packets.

rx_pause_transition_prio_<i
>

The number of receiver transitions from XON state (paused) to 
XOFF state (non-paused)

tx_pause_prio_<i> The total number of PAUSE frames sent to the far-end port
tx_pause_duration_prio_<i> The total time in microseconds that transmission of packets has 

been paused
tx_pause_transition_prio_<i
>

The number of transmitter transitions from XON state (paused) 
to XOFF state (non-paused)

Counter Description

vport<i>_rx_unicast_packets Unicast packets received successfully
vport<i>_rx_unicast_bytes Unicast packet bytes received successfully
vport<i>_rx_multicast_packets Multicast packets received successfully
vport<i>_rx_multicast_bytes Multicast packet bytes received successfully
vport<i>_rx_broadcast_packets Broadcast packets received successfully
vport<i>_rx_broadcast_bytes Broadcast packet bytes received successfully
vport<i>_rx_dropped Received packets discarded due to out-of-buffer condition
vport<i>_rx_errors Received packets discarded due to receive error condition
vport<i>_tx_unicast_packets Unicast packets sent successfully
vport<i>_tx_unicast_bytes Unicast packet bytes sent successfully

Counter Description
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3.1.1.3 Persistent Naming
To avoid network interface renaming after boot or driver restart use the "/etc/udev/rules.d/
70-persistent-net.rules" file.
• Example for Ethernet interfaces:

# PCI device 0x15b3:0x1003 (mlx4_core)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:02:c9:fa:c3:50", 

ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth*", NAME="eth1"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:02:c9:fa:c3:51", 

ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth*", NAME="eth2"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:02:c9:e9:56:a1", 

ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth*", NAME="eth3"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:02:c9:e9:56:a2", 

ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth*", NAME="eth4"

vport<i>_tx_multicast_packets Multicast packets sent successfully
vport<i>_tx_multicast_bytes Multicast packet bytes sent successfully
vport<i>_tx_broadcast_packets Broadcast packets sent successfully
vport<i>_tx_broadcast_bytes Broadcast packet bytes sent successfully
vport<i>_tx_errors Packets dropped due to transmit errors

Counter Description

rx_lro_aggregated Number of packets aggregated
rx_lro_flushed Number of LRO flush to the stack
rx_lro_no_desc Number of times LRO description was not found
rx_alloc_failed Number of times failed preparing receive descriptor
rx_csum_good Number of packets received with good checksum
rx_csum_none Number of packets received with no checksum indication
tx_chksum_offload Number of packets transmitted with checksum offload
tx_queue_stopped Number of times transmit queue suspended
tx_wake_queue Number of times transmit queue resumed
tx_timeout Number of times transmitter timeout
tx_tso_packets Number of packet that were aggregated

Counter Description

rx<i>_packets Total packets successfully received on ring i
rx<i>_bytes Total bytes in successfully received packets on ring i.
tx<i>_packets Total packets successfully transmitted on ring i.
tx<i>_bytes Total bytes in successfully transmitted packets on ring i.

Counter Description
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• Example for IPoIB interfaces:
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{dev_id}=="0x0", ATTR{type}=="32", 

NAME="ib0"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{dev_id}=="0x1", ATTR{type}=="32", 

NAME="ib1"

3.1.2 Quality of Service (QoS)
Quality of Service (QoS) is a mechanism of assigning a priority to a network flow (socket, 
rdma_cm connection) and manage its guarantees, limitations and its priority over other flows. 
This is accomplished by mapping the user's priority to a hardware TC (traffic class) through a 2/
3 stages process. The TC is assigned with the QoS attributes and the different flows behave 
accordingly

3.1.2.1 Mapping Traffic to Traffic Classes
Mapping traffic to TCs consists of several actions which are user controllable, some controlled 
by the application itself and others by the system/network administrators.
The following is the general mapping traffic to Traffic Classes flow:
1. The application sets the required Type of Service (ToS).
2. The ToS is translated into a Socket Priority (sk_prio).
3. The sk_prio is mapped to a User Priority (UP) by the system administrator (some applica-

tions set sk_prio directly).
4. The UP is mapped to TC by the network/system administrator.
5. TCs hold the actual QoS parameters
QoS can be applied on the following types of traffic. However, the general QoS flow may vary 
among them:
• Plain Ethernet - Applications use regular inet sockets and the traffic passes via the ker-

nel Ethernet driver
• RoCE - Applications use the RDMA API to transmit using QPs
• Raw Ethernet QP - Application use VERBs API to transmit using a Raw Ethernet QP

3.1.2.2 Plain Ethernet Quality of Service Mapping
Applications use regular inet sockets and the traffic passes via the kernel Ethernet driver.
The following is the Plain Ethernet QoS mapping flow:
1. The application sets the ToS of the socket using setsockopt (IP_TOS, value).
2. ToS is translated into the sk_prio using a fixed translation:

TOS 0 <=> sk_prio 0
TOS 8 <=> sk_prio 2
TOS 24 <=> sk_prio 4
TOS 16 <=> sk_prio 6

3. The Socket Priority is mapped to the UP:
• If the underlying device is a VLAN device, egress_map is used controlled by the vconfig

command. This is per VLAN mapping.
Mellanox Technologies 39



Features Overview and ConfigurationRev 2.3-1.0.1
• If the underlying device is not a VLAN device, the tc command is used. In this case, even 
though tc manual states that the mapping is from the sk_prio to the TC number, the 
mlx4_en driver interprets this as a sk_prio to UP mapping. 
Mapping the sk_prio to the UP is done by using tc_wrap.py -i <dev name> -u 
0,1,2,3,4,5,6,7

4. The UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad daemon if 
DCBX is used.

Socket applications can use setsockopt (SK_PRIO, value) to directly set the sk_prio 
of the socket. In this case the ToS to sk_prio fixed mapping is not needed. This allows 
the application and the administrator to utilize more than the 4 values possible via ToS.

In case of VLAN interface, the UP obtained according to the above mapping is also used 
in the VLAN tag of the traffic

3.1.2.3 RoCE Quality of Service Mapping
Applications use RDMA-CM API to create and use QPs.
The following is the RoCE QoS mapping flow:
1. The application sets the ToS of the QP using the rdma_set_option option

(RDMA_OPTION_ID_TOS, value).
2. ToS is translated into the Socket Priority (sk_prio) using a fixed translation:

TOS 0 <=> sk_prio 0
TOS 8 <=> sk_prio 2
TOS 24 <=> sk_prio 4
TOS 16 <=> sk_prio 6

3. The Socket Priority is mapped to the User Priority (UP) using the tc command.
• In case of a VLAN device where the parent real device is used for the purpose of this map-

ping
• If the underlying device is a VLAN device, and the parent real device was not used for the 

mapping, the VLAN device’s egress_map is used
• On Kernels 3.13 and higher or Kernels that ported the functionality of enabled access to 

the VLAN device egress map (through vlan_dev_get_egress_qos_mask() call in if_vlan.h)
4. The UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad daemon if 

DCBX is used.

With RoCE, there can only be 4 predefined ToS values for the purpose of QoS mapping.

3.1.2.4 Raw Ethernet QP Quality of Service Mapping
Applications open a Raw Ethernet QP using VERBs directly.
The following is the RoCE QoS mapping flow:
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1. The application sets the UP of the Raw Ethernet QP during the INIT to RTR state transition of 
the QP:
• Sets qp_attrs.ah_attrs.sl = up
• Calls modify_qp with IB_QP_AV set in the mask

2. The UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad daemon if 
DCBX is used

When using Raw Ethernet QP mapping, the TOS/sk_prio to UP mapping is lost.

Performing the Raw Ethernet QP mapping forces the QP to transmit using the given UP.
If packets with VLAN tag are transmitted, UP in the VLAN tag will be overwritten with 
the given UP.

3.1.2.5 Map Priorities with tc_wrap.py/mlnx_qos
Network flow that can be managed by QoS attributes is described by a User Priority (UP). A 
user's sk_prio is mapped to UP which in turn is mapped into TC.
• Indicating the UP

• When the user uses sk_prio, it is mapped into a UP by the ‘tc’ tool. This is done by the 
tc_wrap.py tool which gets a list of <= 16 comma separated UP and maps the sk_prio to 
the specified UP.  
For example, tc_wrap.py -ieth0 -u 1,5 maps sk_prio 0 of eth0 device to UP 1 and 
sk_prio 1 to UP 5.

• Setting set_egress_map in VLAN, maps the skb_priority of the VLAN to a vlan_qos. 
The vlan_qos is represents a UP for the VLAN device.

• In RoCE, rdma_set_option with RDMA_OPTION_ID_TOS could be used to set the UP
• When creating QPs, the sl field in ibv_modify_qp command represents the UP

• Indicating the TC
• After mapping the skb_priority to UP, one should map the UP into a TC. This assigns 

the user priority to a specific hardware traffic class. In order to do that, mlnx_qos should 
be used. mlnx_qos gets a list of a mapping between UPs to TCs. For example, mlnx_qos -
ieth0 -p 0,0,0,0,1,1,1,1 maps UPs 0-3 to TC0, and Ups 4-7 to TC1.

3.1.2.6 Quality of Service Properties
The different QoS properties that can be assigned to a TC are:
• Strict Priority (see “Strict Priority”)
• Minimal Bandwidth Guarantee (ETS) (see “Minimal Bandwidth Guarantee (ETS)”)
• Rate Limit (see “Rate Limit”)
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Strict Priority
When setting a TC's transmission algorithm to be 'strict', then this TC has absolute (strict) prior-
ity over other TC strict priorities coming before it (as determined by the TC number: TC 7 is 
highest priority, TC 0 is lowest). It also has an absolute priority over non strict TCs (ETS).
This property needs to be used with care, as it may easily cause starvation of other TCs.
A higher strict priority TC is always given the first chance to transmit. Only if the highest strict 
priority TC has nothing more to transmit, will the next highest TC be considered.
Non strict priority TCs will be considered last to transmit.
This property is extremely useful for low latency low bandwidth traffic. Traffic that needs to get 
immediate service when it exists, but is not of high volume to starve other transmitters in the sys-
tem.

Minimal Bandwidth Guarantee (ETS)
After servicing the strict priority TCs, the amount of bandwidth (BW) left on the wire may be 
split among other TCs according to a minimal guarantee policy.
If, for instance, TC0 is set to 80% guarantee and TC1 to 20% (the TCs sum must be 100), then 
the BW left after servicing all strict priority TCs will be split according to this ratio.
Since this is a minimal guarantee, there is no maximum enforcement. This means, in the same 
example, that if TC1 did not use its share of 20%, the reminder will be used by TC0.

Rate Limit
Rate limit defines a maximum bandwidth allowed for a TC. Please note that 10% deviation from 
the requested values is considered acceptable.

3.1.2.7 Quality of Service Tools

mlnx_qos
mlnx_qos is a centralized tool used to configure QoS features of the local host. It communicates 
directly with the driver thus does not require setting up a DCBX daemon on the system.
The mlnx_qos tool enables the administrator of the system to:
• Inspect the current QoS mappings and configuration

The tool will also display maps configured by TC and vconfig set_egress_map tools, in 
order to give a centralized view of all QoS mappings.

• Set UP to TC mapping
• Assign a transmission algorithm to each TC (strict or ETS) 
• Set minimal BW guarantee to ETS TCs
• Set rate limit to TCs

For unlimited ratelimit set the ratelimit to 0.
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Usage:

mlnx_qos -i <interface> [options]

Options:

  --version             show program's version number and exit
  -h, --help            show this help message and exit
  -p LIST, --prio_tc=LIST
                        maps UPs to TCs. LIST is 8 comma seperated TC numbers.
                        Example: 0,0,0,0,1,1,1,1 maps UPs 0-3 to TC0, and UPs
                        4-7 to TC1
  -s LIST, --tsa=LIST   Transmission algorithm for each TC. LIST is comma
                        seperated algorithm names for each TC. Possible
                        algorithms: strict, etc. Example: ets,strict,ets sets
                        TC0,TC2 to ETS and TC1 to strict. The rest are
                        unchanged.
  -t LIST, --tcbw=LIST  Set minimal guaranteed %BW for ETS TCs. LIST is comma
                        seperated percents for each TC. Values set to TCs that
                        are not configured to ETS algorithm are ignored, but
                        must be present. Example: if TC0,TC2 are set to ETS,
                        then 10,0,90 will set TC0 to 10% and TC2 to 90%.
                        Percents must sum to 100.
  -r LIST, --ratelimit=LIST
                        Rate limit for TCs (in Gbps). LIST is a comma
                        seperated Gbps limit for each TC. Example: 1,8,8 will
                        limit TC0 to 1Gbps, and TC1,TC2 to 8 Gbps each.
  -i INTF, --interface=INTF
                        Interface name
  -a                    Show all interface's TCs
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Get Current Configuration:
tc: 0 ratelimit: unlimited, tsa: strict
         up:  0
                 skprio: 0
                 skprio: 1
                 skprio: 2 (tos: 8)
                 skprio: 3
                 skprio: 4 (tos: 24)
                 skprio: 5
                 skprio: 6 (tos: 16)
                 skprio: 7
                 skprio: 8
                 skprio: 9
                 skprio: 10
                 skprio: 11
                 skprio: 12
                 skprio: 13
                 skprio: 14
                 skprio: 15
         up:  1
         up:  2
         up:  3
         up:  4
         up:  5
         up:  6
         up:  7
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Set ratelimit. 3Gbps for tc0 4Gbps for tc1 and 2Gbps for tc2:
tc: 0 ratelimit: 3 Gbps, tsa: strict
         up:  0
                 skprio: 0
                 skprio: 1
                 skprio: 2 (tos: 8)
                 skprio: 3
                 skprio: 4 (tos: 24)
                 skprio: 5
                 skprio: 6 (tos: 16)
                 skprio: 7
                 skprio: 8
                 skprio: 9
                 skprio: 10
                 skprio: 11
                 skprio: 12
                 skprio: 13
                 skprio: 14
                 skprio: 15
         up:  1
         up:  2
         up:  3
         up:  4
         up:  5
         up:  6
         up:  7

Configure QoS. map UP 0,7 to tc0, 1,2,3 to tc1 and 4,5,6 to tc 2. set tc0,tc1 as ets and tc2 
as strict. divide ets 30% for tc0 and 70% for tc1:

mlnx_qos -i eth3 -s ets,ets,strict -p 0,1,1,1,2,2,2 -t 30,70
tc: 0 ratelimit: 3 Gbps, tsa: ets, bw: 30%
         up:  0
                 skprio: 0
                 skprio: 1
                 skprio: 2 (tos: 8)
                 skprio: 3
                 skprio: 4 (tos: 24)
                 skprio: 5
                 skprio: 6 (tos: 16)
                 skprio: 7
                 skprio: 8
                 skprio: 9
                 skprio: 10
                 skprio: 11
                 skprio: 12
                 skprio: 13
                 skprio: 14
                 skprio: 15
  up:  7
tc: 1 ratelimit: 4 Gbps, tsa: ets, bw: 70%
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tc and tc_wrap.py
The 'tc' tool is used to setup sk_prio to UP mapping, using the mqprio queue discipline.
In kernels that do not support mqprio (such as 2.6.34), an alternate mapping is created in sysfs. 
The 'tc_wrap.py' tool will use either the sysfs or the 'tc' tool to configure the sk_prio to UP 
mapping.

Usage:

tc_wrap.py -i <interface> [options]
 

Options:

--version    show program's version number and exit
-h, --help    show this help message and exit
-u SKPRIO_UP, --skprio_up=SKPRIO_UP  maps sk_prio to UP. LIST is <=16 comma separated
                                     UP. index of element is sk_prio.
-i INTF, --interface=INTF            Interface name

Example: set skprio 0-2 to UP0, and skprio 3-7 to UP1 on eth4

         up:  1
         up:  2
         up:  3
tc: 2 ratelimit: 2 Gbps, tsa: strict
         up:  4
         up:  5
         up:  6

UP  0
        skprio: 0
        skprio: 1
        skprio: 2 (tos: 8)
        skprio: 7
        skprio: 8
        skprio: 9
        skprio: 10
        skprio: 11
        skprio: 12
        skprio: 13
        skprio: 14
        skprio: 15
UP  1
        skprio: 3
        skprio: 4 (tos: 24)
        skprio: 5
        skprio: 6 (tos: 16)
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Additional Tools
tc tool compiled with the sch_mqprio module is required to support kernel v2.6.32 or higher. 
This is a part of iproute2 package v2.6.32-19 or higher. Otherwise, an alternative custom sysfs 
interface is available. 
• mlnx_qos tool (package: ofed-scripts) requires python >= 2.5
• tc_wrap.py (package: ofed-scripts) requires python >= 2.5

3.1.3 Quantized Congestion Notification (QCN)
Congestion control is used to reduce packet drops in lossy environments and mitigate congestion 
spreading and resulting victim flows in lossless environments.
The Quantized Congestion Notification (QCN) IEEE standard (802.1Qau) provides congestion 
control for long-lived flows in limited bandwidth-delay product Ethernet networks. It is part of 
the IEEE Data Center Bridging (DCB) protocol suite, which also includes ETS, PFC, and 
DCBX. QCN in conducted at L2, and is targeted for hardware implementations. QCN applies to 
all Ethernet packets and all transports, and both the host and switch behavior is detailed in the 
standard. 
QCN user interface allows the user to configure QCN activity. QCN configuration and retrieval 
of information is done by the mlnx_qcn tool. The command interface provides the user with a set 
of changeable attributes, and with information regarding QCN's counters and statistics. All 
parameters and statistics are defined per port and priority. QCN command interface is available if 
and only the hardware supports it. 

3.1.3.1 QCN Tool - mlnx_qcn
mlnx_qcn is a tool used to configure QCN attributes of the local host. It communicates directly 
with the driver thus does not require setting up a DCBX daemon on the system.
The mlnx_qcn enables the user to:
• Inspect the current QCN configurations for a certain port sorted by priority
• Inspect the current QCN statistics and counters for a certain port sorted by priority
• Set values of chosen QCN parameters

Usage:

mlnx_qcn -i <interface> [options] 

Options:

UP  2
UP  3
UP  4
UP  5
UP  6
UP  7

--version Show program's version number and exit
-h, --help Show this help message and exit
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 To get QCN current configuration sorted by priority:
mlnx_qcn -i eth2 -g parameters

 To show QCN's statistics sorted by priority:
mlnx_qcn -i eth2 -g statistics

Example output when running mlnx_qcn -i eth2 -g parameters:

-i INTF, --interface=INTF Interface name
-g TYPE, --get_type=TYPE Type of information to get statistics/param-

eters
--rpg_enable=RPG_ENABLE_LIST Set value of rpg_enable according to prior-

ity, use spaces between values and -1 for 
unknown values.

--rppp_max_rps=RPPP_MAX_RPS_LIST Set value of rppp_max_rps according to prior-
ity, use spaces between values and -1 for 
unknown values.

--rpg_time_reset=RPG_TIME_RESET_LIST Set value of rpg_time_reset according to pri-
ority, use spaces between values and -1 for 
unknown values.

--rpg_byte_reset=RPG_BYTE_RESET_LIST Set value of rpg_byte_reset according to pri-
ority, use spaces between values and -1 for 
unknown values.

--rpg_threshold=RPG_THRESHOLD_LIST Set value of rpg_threshold according to pri-
ority, use spaces between values and -1 for 
unknown values.

--rpg_max_rate=RPG_MAX_RATE_LIST Set value of rpg_max_rate according to prior-
ity, use spaces between values and -1 for 
unknown values.

--rpg_ai_rate=RPG_AI_RATE_LIST Set value of rpg_ai_rate according to prior-
ity, use spaces between values and -1 for 
unknown values.

--rpg_hai_rate=RPG_HAI_RATE_LIST Set value of rpg_hai_rate according to prior-
ity, use spaces between values and -1 for 
unknown values.

--rpg_gd=RPG_GD_LIST Set value of rpg_gd according to priority, 
use spaces between values and -1 for unknown 
values.

--rpg_min_dec_fac=RPG_MIN_DEC_FAC_LIST Set value of rpg_min_dec_fac according to 
priority, use spaces between values and -1 
for unknown values.

--rpg_min_rate=RPG_MIN_RATE_LIST Set value of rpg_min_rate according to prior-
ity, use spaces between values and -1 for 
unknown values.

--cndd_state_machine=CNDD_STATE_MACHINE_LIST Set value of cndd_state_machine according to 
priority, use spaces between values and -1 
for unknown values.
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priority 0:
        rpg_enable: 0
        rppp_max_rps: 1000
        rpg_time_reset: 1464
        rpg_byte_reset: 150000
        rpg_threshold: 5
        rpg_max_rate: 40000
        rpg_ai_rate: 10
        rpg_hai_rate: 50
        rpg_gd: 8
        rpg_min_dec_fac: 2
        rpg_min_rate: 10
        cndd_state_machine: 0
priority 1:
        rpg_enable: 0
        rppp_max_rps: 1000
        rpg_time_reset: 1464
        rpg_byte_reset: 150000
        rpg_threshold: 5
        rpg_max_rate: 40000
        rpg_ai_rate: 10
        rpg_hai_rate: 50
        rpg_gd: 8
        rpg_min_dec_fac: 2
        rpg_min_rate: 10
        cndd_state_machine: 0
.............................
.............................
priority 7:
        rpg_enable: 0
        rppp_max_rps: 1000
        rpg_time_reset: 1464
        rpg_byte_reset: 150000
        rpg_threshold: 5
        rpg_max_rate: 40000
        rpg_ai_rate: 10
        rpg_hai_rate: 50
        rpg_gd: 8
        rpg_min_dec_fac: 2
        rpg_min_rate: 10
        cndd_state_machine: 0

Setting QCN Configuration
Setting the QCN parameters, requires updating its value for each priority. '-1' indicates no change 
in the current value.   
Example for setting 'rp g_enable' in order to enable QCN for priorities 3, 5, 6:

mlnx_qcn -i eth2 --rpg_enable=-1 -1 -1 1 -1 1 1 -1

Example for setting 'rpg_hai_rate' for priorities 1, 6, 7:
mlnx_qcn -i eth2 --rpg_hai_rate=60 -1 -1 -1 -1 -1 60 60
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3.1.4 Ethtool
ethtool is a standard Linux utility for controlling network drivers and hardware, particularly for 
wired Ethernet devices. It can be used to: 
• Get identification and diagnostic information 
• Get extended device statistics 
• Control speed, duplex, autonegotiation and flow control for Ethernet devices 
• Control checksum offload and other hardware offload features 
• Control DMA ring sizes and interrupt moderation
The following are the ethtool supported options:
Table 3 - ethtool Supported Options

Options Description

ethtool -i eth<x> Checks driver and device information.
 For example:
 #> ethtool -i eth2
 driver: mlx4_en (MT_0DD0120009_CX3)

 version: 2.1.6 (Aug 2013)

 firmware-version: 2.30.3000

 bus-info: 0000:1a:00.0

ethtool -k eth<x> Queries the stateless offload status.
ethtool -K eth<x> [rx on|off] [tx 
on|off] [sg on|off] [tso on|off] [lro 
on|off] [gro on|off] [gso on|off] 
[rxvlan on|off]

Sets the stateless offload status.
TCP Segmentation Offload (TSO), Generic Segmentation 
Offload (GSO): increase outbound throughput by reducing 
CPU overhead. It works by queuing up large buffers and 
letting the network interface card split them into separate 
packets.
Large Receive Offload (LRO): increases inbound through-
put of high-bandwidth network connections by reducing 
CPU overhead. It works by aggregating multiple incoming 
packets from a single stream into a larger buffer before 
they are passed higher up the networking stack, thus 
reducing the number of packets that have to be processed. 
LRO is available in kernel versions < 3.1 for untagged 
traffic.
Note: LRO will be done whenever possible. Otherwise 
GRO will be done. Generic Receive Offload (GRO) is 
available throughout all kernels.
Hardware Vlan Striping Offload (rxvlan): When enabled 
received VlAN traffic will be stripped from the VLAN tag 
by the hardware.

ethtool -c eth<x> Queries interrupt coalescing settings. 
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ethtool -C eth<x> adaptive-rx 
on|off

Enables/disables adaptive interrupt moderation. 
By default, the driver uses adaptive interrupt moderation 
for the receive path, which adjusts the moderation time to 
the traffic pattern.

ethtool -C eth<x> [pkt-rate-low N] 
[pkt-rate-high N] [rx-usecs-low N] 
[rx-usecs-high N]

Sets the values for packet rate limits and for moderation 
time high and low values. 
• Above an upper limit of packet rate, adaptive mod-

eration will set the moderation time to its highest 
value.

• Below a lower limit of packet rate, the moderation 
time will be set to its lowest value.

ethtool -C eth<x> [rx-usecs N] [rx-
frames N]

Sets the interrupt coalescing settings when the adaptive 
moderation is disabled.
Note: usec settings correspond to the time to wait after the 
*last* packet is sent/received before triggering an inter-
rupt.

ethtool -a eth<x> Queries the pause frame settings.
ethtool -A eth<x> [rx on|off] [tx 
on|off]

Sets the pause frame settings.

ethtool -g eth<x> Queries the ring size values.
ethtool -G eth<x> [rx <N>] [tx 
<N>]

Modifies the rings size.

ethtool -S eth<x> Obtains additional device statistics.
ethtool -t eth<x> Performs a self diagnostics test.
ethtool -s eth<x> msglvl [N] Changes the current driver message level.
ethtool -T eth<x> Shows time stamping capabilities
ethtool -l eth<x> Shows the number of channels
ethtool -L eth<x> [rx <N>] [tx 
<N>]

Sets the number of channels

etthtool -m|--dump-module-
eeprom eth<x>  [ raw on|off ] [ hex 
on|off ] [ offset N ] [ length N ]

Queries/Decodes the cable module eeprom information.

ethtool --show-priv-flags eth<x> Shows driver private flags and their states (on/off)
Private flags are:
• pm_qos_request_low_latency
• mlx4_rss_xor_hash_function
• qcn_disable_32_14_4_e

ethtool --set-priv-flags eth<x> 
<priv flag> <on/off>

Enables/disables driver feature matching the given private 
flag.

Table 3 - ethtool Supported Options

Options Description
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3.1.5 Checksum Offload
MLNX_OFED supports the following Receive IP/L4 Checksum Offload modes:
• CHECKSUM_UNNECESSARY: By setting this mode the driver indicates to the Linux 

Networking Stack that the hardware successfully validated the IP and L4 checksum so 
the Linux Networking Stack does not need to deal with IP/L4 Checksum validation.
Checksum Unnecessary is passed to the OS when all of the following are true:
• Ethtool -k <DEV> shows rx-checksumming: on
• Received TCP/UDP packet and both IP checksum and L4 protocol checksum are correct.

• CHECKSUM_COMPLETE: When the checksum validation cannot be done or fails, the 
driver still reports to the OS the calculated by hardware checksum value. This allows 
accelerating checksum validation in Linux Networking Stack, since it does not have to 
calculate the whole checksum including payload by itself. 
Checksum Complete is passed to OS when all of the following are true:
• Ethtool -k <DEV> shows rx-checksumming: on
• Using ConnectX®-3, firmware version 2.31.7000 and up
• Received IpV4/IpV6 non TCP/UDP packet

• CHECKSUM_NONE: By setting this mode the driver indicates to the Linux Network-
ing Stack that the hardware failed to validate the IP or L4 checksum so the Linux Net-
working Stack must calculate and validate the IP/L4 Checksum.
Checksum None is passed to OS for all other cases.

3.1.6 RDMA over Converged Ethernet (RoCE)
Remote Direct Memory Access (RDMA) is the remote memory management capability that 
allows server-to-server data movement directly between application memory without any CPU 
involvement. RDMA over Converged Ethernet (RoCE) is a mechanism to provide this efficient 
data transfer with very low latencies on lossless Ethernet networks. With advances in data center 
convergence over reliable Ethernet, ConnectX® EN with RoCE uses the proven and efficient 
RDMA transport to provide the platform for deploying RDMA technology in mainstream data 
center application at 10GigE and 40GigE link-speed. ConnectX® EN with its hardware offload 
support takes advantage of this efficient RDMA transport (InfiniBand) services over Ethernet to 
deliver ultra-low latency for performance-critical and transaction intensive applications such as 
financial, database, storage, and content delivery networks. 
RoCE encapsulates IB transport in one of the following Ethernet packet
• RoCE MAC based - dedicated ether type (0x8195)
• RoCE IP based - IP and dedicate IP protocol (0xfe)
• RoCEv2 - UDP and dedicated UDP port (1021)
When working with RDMA applications over Ethernet link layer the following points should be 
noted:
• The presence of a Subnet Manager (SM) is not required in the fabric. Thus, operations 

that require communication with the SM are managed in a different way in RoCE. This 
does not affect the API but only the actions such as joining multicast group, that need to 
be taken when using the API
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• Since LID is a layer 2 attribute of the InfiniBand protocol stack, it is not set for a port 
and is displayed as zero when querying the port

• With RoCE, the alternate path is not set for RC QP and therefore APM is not supported
• Since the SM is not present, querying a path is impossible. Therefore, the path record 

structure must be filled with the relevant values before establishing a connection. Hence, 
it is recommended working with RDMA-CM to establish a connection as it takes care of 
filling the path record structure

• The GID table for each port is populated with N+1 entries where N is the number of IP 
addresses that are assigned to all network devices associated with the port including 
VLAN devices, alias devices and bonding masters. The only exception to this rule is a 
bonding master of a slave in a DOWN state. In that case, a matching GID to the IP 
address of the master will not be present in the GID table of the slave's port

• The first entry in the GID table (at index 0) for each port is always present and equal to 
the link local IPv6 address of the net device that is associated with the port. Note that 
even if the link local IPv6 address is not set, index 0 is still populated. 

• GID format can be of 2 types, IPv4 and IPv6. IPv4 GID is a IPv4-mapped IPv6 address1

while IPv6 GID is the IPv6 address itself
• VLAN tagged Ethernet frames carry a 3-bit priority field. The value of this field is 

derived from the IB SL field by taking the 3 least significant bits of the SL field
• RoCE traffic is not shown in the associated Ethernet device's counters since it is 

offloaded by the hardware and does not go through Ethernet network driver. RoCE traf-
fic is counted in the same place where InfiniBand traffic is counted; /sys/class/infini-
band/<device>/ports/<port number>/counters/

3.1.6.1 IP Routable RoCE

RoCE v2 is supported only in ConnectX®-3 Pro adapter cards.

A straightforward extension of the RoCE protocol enables traffic to operate in IP layer 3 environ-
ments. This capability is obtained via a simple modification of the RoCE packet format. Instead 
of the GRH used in RoCE, IP routable RoCE packets carry an IP header which allows traversal 
of IP L3 Routers and a UDP header (RoCEv2 only) that serves as a stateless encapsulation layer 
for the RDMA Transport Protocol Packets over IP. 
The proposed RoCEv2 packets use a well-known UDP destination port value that unequivocally 
distinguishes the datagram. Similar to other protocols that use UDP encapsulation, the UDP 
source port field is used to carry an opaque flow-identifier that allows network devices to imple-
ment packet forwarding optimizations (e.g. ECMP) while staying agnostic to the specifics of the 
protocol header format. 
Furthermore, since this change exclusively affects the packet format on the wire, and due to the 
fact that with RDMA semantics packets are generated and consumed below the AP, applications 
can seamlessly operate over any form of RDMA service (including the routable version of RoCE 
as shown the figure below), in a completely transparent way.

1. For the IPv4 address A.B.C.D the corresponding IPv4-mapped IPv6 address is ::ffff.A.B.C.D
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Figure 2: RoCE and v2 Protocol Stack

3.1.6.2 RoCE Configuration
In order to function reliably, RoCE requires a form of flow control. While it is possible to use 
global flow control, this is normally undesirable, for performance reasons.
The normal and optimal way to use RoCE is to use Priority Flow Control (PFC). To use PFC, it 
must be enabled on all endpoints and switches in the flow path.
For further information, please refer to RoCE Over L2 Network Enabled with PFC User Guide:
http://www.mellanox.com/related-docs/prod_software/
RoCE_with_Priority_Flow_Control_Application_Guide.pdf

3.1.6.2.1 Prerequisites 
The following are the driver’s prerequisites in order to set or configure RoCE:
• ConnectX®-3 firmware version 2.32.5000 or higher
• ConnectX®-3 Pro firmware version 2.32.5000 or higher
• All InfiniBand verbs applications which run over InfiniBand verbs should work on 

RoCE links if they use GRH headers. 
• Set HCA to use Ethernet protocol: 

Display the Device Manager and expand “System Devices”. Please refer to 
Section 3.1.1.1, “Port Type Management”, on page 34.

3.1.6.2.2 Configuring SwitchX® Based Switch System
 To enable RoCE, the SwitchX should be configured as follows:
• Ports facing the host should be configured as access ports, and either use global pause or 

Port Control Protocol (PCP) for priority flow control
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• Ports facing the network should be configured as trunk ports, and use Port Control Proto-
col (PCP) for priority flow control

For further information on how to configure SwitchX, please refer to SwitchX User Manual.

3.1.6.2.3 Configuring the RoCE Mode
RoCE mode is configured via the module parameter, roce_mode, in mlx4_core kernel module. 
The value can be set globally and it will be applied to all HCAs on the node, or specifically to an 
HCA (identified by BDF). The recognized values for roce_modes are
• 0 - RoCE MAC based (default)
• 1 - RoCE IP based
• 2 - RoCEv2

3.1.6.2.4 Configuring DAPL over RoCE
The default dat.conf file which contains entries for the DAPL devices, does not contain entries 
for the DAPL over RDMA_CM over RoCE devices.
 To add the missing entries:
 Step 1. Run the ibdev2netdev utility to see all the associations between the Ethernet devices and the 

IB devices/ports.
 Step 2. Add a new entry line according to the format below to the dat.conf file for each output line 

of the ibdev2netdev utility.
<IA Name> u2.0 nonthreadsafe default libdaplofa.so.2 dapl.2.0 "<ethX> <port>" ""

Parameter Description Example

<IA Name> The device's IA name. The name must be unique. ofa-v2-ethx
<ethX> The associated Ethernet device used by RoCE. eth3
<port> The port number. 1

The following is an example of the ibdev2netdev utility's output and the entries added per 
each output line:

sw419:~ # ibdev2netdev mlx4_0 port 2 <===> eth2 mlx4_0 port 1 <===> eth3
ofa-v2-eth2 u2.0 nonthreadsafe default libdaplofa.so.2 dapl.2.0 "eth2 2" ""
ofa-v2-eth3 u2.0 nonthreadsafe default libdaplofa.so.2 dapl.2.0 "eth3 1" ""

The next section provides information of how to use InfiniBand over Ethernet (RoCE).

3.1.6.2.5 Installing and Loading the Driver
 To install and load the driver:
 Step 1. Install MLNX_OFED (See section Section 2.3, “Installing Mellanox OFED”, on page 23 

for details on installation.)
RoCE is installed as part of mlx4 and mlx4_en and other modules upon driver’s installa-
tion. 

The list of the modules that will be loaded automatically upon boot can be found in the 
configuration file /etc/infiniband/openib.conf.
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 Step 2. Display the existing MLNX_OFED version.
# ibv_devinfo 
hca_id: mlx4_0
        transport: InfiniBand (0)
        fw_ver: 2.31.5050
        node_guid: 0002:c903:0008:e810 
        sys_image_guid: 0002:c903:0008:e813 
        vendor_id: 0x02c9
        vendor_part_id: 4099 
        hw_ver: 0xB0
        board_id: MT_1060110019 
        phys_port_cnt: 2
             port: 1
                   state: PORT_INIT (2)
                   max_mtu: 2048 (4)
                   active_mtu: 2048 (4)
                   sm_lid: 0
                   port_lid: 0 
                   port_lmc: 0x00 
                   link_layer: IB
             port: 2
                   state: PORT_ACTIVE (4)
                   max_mtu: 2048 (4)
                   active_mtu: 1024 (3)
                   sm_lid: 0
                   port_lid: 0 
                   port_lmc: 0x00 
                   link_layer: Ethernet
#

Notes about the output above:
The ports’ states are: 
• Port 1 - InfiniBand, is in PORT_INIT 

state
• Port 2 - Ethernet is in PORT_ACTIVE 

state

The port state can also be obtained by running the 
following commands:
# cat /sys/class/infiniband/mlx4_0/ports/
1/state 2: INIT

# cat /sys/class/infiniband/mlx4_0/ports/
2/state 4: ACTIVE

#

The link_layer parameter shows that:
• Port 1 is InfiniBand 
• Port 2 is Ethernet

Nevertheless, Port 2 appears in the list of 
the HCA's ports.

The link_layer of the two ports can also be obtained 
by running the following commands:
# cat /sys/class/infiniband/mlx4_0/ports/
1/link_layer InfiniBand

# cat /sys/class/infiniband/mlx4_0/ports/
2/link_layer Ethernet

#
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3.1.6.2.6 Associating InfiniBand Ports to Ethernet Ports
Since both RoCE and mlx4_en use the Ethernet port of the adapter, one of the drivers must con-
trol the port state. In the example above, the mlx4_en driver controls the port’s state. The 
mlx4_ib driver holds a reference to the mlx4_en net device for getting notifications about the 
state of the port, as well as using the mlx4_en driver to resolve IP addresses to MAC that are 
required for address vector creation. However, RoCE traffic does not go through the mlx4_en 
driver, it is completely offloaded by the hardware.

# ibdev2netdev
mlx4_0 port 2 <===> eth2
mlx4_0 port 1 <===> ib0
#

3.1.6.2.7 Configuring an IP Address to the mlx4_en Interface
 To configure an IP address to the mlx4_en interface:
 Step 1. Configure an IP address to the mlx4_en interface on both sides of the link.

# ifconfig eth2 20.4.3.220
# ifconfig eth2
eth2 Link encap:Ethernet HWaddr 00:02:C9:08:E8:11

inet addr:20.4.3.220 Bcast:20.255.255.255 Mask:255.0.0.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

The fw_ver parameter shows that the firm-
ware version is 2.31.5050.

The firmware version can also be obtained by run-
ning the following commands:
# cat /sys/class/infiniband/mlx4_0/fw_ver 
2.31.5050

#

Although the InfiniBand over Ethernet's 
Port MTU is 2K byte at maximum, the 
actual MTU cannot exceed the mlx4_en 
interface's MTU. Since the mlx4_en inter-
face's MTU is typically 1560, port 2 will 
run with MTU of 1K. 
Please note that RoCE's MTU are subject 
to InfiniBand MTU restrictions. The 
RoCE's MTU values are, 256 byte, 512 
byte, 1024 byte and 2K. In general RoCE 
MTU is the largest power of 2 that is still 
lower than mlx4_en interface MTU.

-
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 Step 2.  Make sure that ping is working.
# ping 20.4.3.219
PING 20.4.3.219 (20.4.3.219) 56(84) bytes of data.
64 bytes from 20.4.3.219: icmp_seq=1 ttl=64 time=0.873 ms
64 bytes from 20.4.3.219: icmp_seq=2 ttl=64 time=0.198 ms
64 bytes from 20.4.3.219: icmp_seq=3 ttl=64 time=0.167 ms
--- 20.4.3.219 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.167/0.412/0.873/0.326 ms

3.1.6.2.8  Inspecting the GID Table
 To inspect the GID table:

# cat /sys/class/infiniband/mlx4_0/ports/2/gids/0
fe80:0000:0000:0000:0202:c9ff:fe08:e811
#
# cat /sys/class/infiniband/mlx4_0/ports/2/gids/1
0000:0000:0000:0000:0000:0000:0000:0000
#

According to the output, we currently have one entry only.

3.1.6.2.9 Running an - ibv_rc_pingpong Test
 Step 1. Start the server.

# ibv_rc_pingpong -g 0 -i 2
local address: LID 0x0000, QPN 0x00004f, PSN 0x3315f6, GID fe80::202:c9ff:fe08:e799
remote address: LID 0x0000, QPN 0x04004f, PSN 0x2cdede, GID fe80::202:c9ff:fe08:e811
8192000 bytes in 0.01 seconds = 4730.13 Mbit/sec
1000 iters in 0.01 seconds = 13.85 usec/iter
#

 Step 2. Start the client.
# ibv_rc_pingpong -g 0 -i 2 sw419
local address: LID 0x0000, QPN 0x04004f, PSN 0x2cdede, GID fe80::202:c9ff:fe08:e811
remote address: LID 0x0000, QPN 0x00004f, PSN 0x3315f6, GID fe80::202:c9ff:fe08:e799
8192000 bytes in 0.01 seconds = 4787.84 Mbit/sec
1000 iters in 0.01 seconds = 13.69 usec/iter
#

3.1.6.2.10Adding VLANs
 To add VLANs:
 Step 1. Make sure that the 8021.q module is loaded.

# modprobe 8021q

 Step 2. Add VLAN.
# vconfig add eth2 7
Added VLAN with VID == 7 to IF -:eth2:-
#

 Step 3. Configure an IP address.
# ifconfig eth2.7 7.4.3.220
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 Step 4. Examine the GID table.
# cat /sys/class/infiniband/mlx4_0/ports/2/gids/0
fe80:0000:0000:0000:0202:c9ff:fe08:e811
#
# cat /sys/class/infiniband/mlx4_0/ports/2/gids/1
fe80:0000:0000:0000:0202:c900:0708:e811

3.1.6.2.11Running an - ibv_rc_pingpong Test on the VLAN
 Step 1. Start the server.

# ibv_rc_pingpong -g 1 -i 2
local address: LID 0x0000, QPN 0x04004f, PSN 0xbdde2c, GID fe80::202:c900:708:e799
remote address: LID 0x0000, QPN 0x08004f, PSN 0xc9d800, GID fe80::202:c900:708:e811
8192000 bytes in 0.01 seconds = 4824.50 Mbit/sec
1000 iters in 0.01 seconds = 13.58 usec/iter

 Step 2. Start the client.
# ibv_rc_pingpong -g 1 -i 2 sw419
local address: LID 0x0000, QPN 0x08004f, PSN 0xc9d800, GID fe80::202:c900:708:e811
remote address: LID 0x0000, QPN 0x04004f, PSN 0xbdde2c, GID fe80::202:c900:708:e799
8192000 bytes in 0.01 seconds = 4844.83 Mbit/sec
1000 iters in 0.01 seconds = 13.53 usec/iter

3.1.6.2.12Defining Ethernet Priority (PCP in 802.1q Headers)
 Step 1. Define ethernet priority on the server.

# ibv_rc_pingpong -g 1 -i 2 -l 4
local address: LID 0x0000, QPN 0x1c004f, PSN 0x9daf6c, GID fe80::202:c900:708:e799
remote address: LID 0x0000, QPN 0x1c004f, PSN 0xb0a49b, GID fe80::202:c900:708:e811
8192000 bytes in 0.01 seconds = 4840.89 Mbit/sec
1000 iters in 0.01 seconds = 13.54 usec/iter

 Step 2. Define ethernet priority on the client.
# ibv_rc_pingpong -g 1 -i 2 -l 4 sw419
local address: LID 0x0000, QPN 0x1c004f, PSN 0xb0a49b, GID fe80::202:c900:708:e811
remote address: LID 0x0000, QPN 0x1c004f, PSN 0x9daf6c, GID fe80::202:c900:708:e799
8192000 bytes in 0.01 seconds = 4855.96 Mbit/sec
1000 iters in 0.01 seconds = 13.50 usec/iter

3.1.6.2.13 Using rdma_cm Tests
 Step 1. Use rdma_cm test on the server.

# ucmatose
cmatose: starting server
initiating data transfers
completing sends
receiving data transfers
data transfers complete
cmatose: disconnecting
disconnected
test complete
return status 0
#
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 Step 2. Use rdma_cm test on the client.
# ucmatose -s 20.4.3.219
cmatose: starting client
cmatose: connecting
receiving data transfers
sending replies
data transfers complete
test complete
return status 0
#

This server-client run is without PCP or VLAN because the IP address used does not belong to a 
VLAN interface. If you specify a VLAN IP address, then the traffic should go over VLAN.

3.1.6.3 Type Of Service (TOS)
The TOS field for rdma_cm sockets can be set using the rdma_set_option() API, just as it is set 
for regular sockets. If a TOS is not set, the default value (0) is used. Within the rdma_cm kernel 
driver, the TOS field is converted into an SL field. The conversion formula is as follows:
• SL = TOS >> 5 (e.g., take the 3 most significant bits of the TOS field)
In the hardware driver, the SL field is converted into PCP by the following formula:
• PCP = SL & 7 (take the 3 least significant bits of the TOS field)

SL affects the PCP only when the traffic goes over tagged VLAN frames.

3.1.7 Explicit Congestion Notification (ECN)
ECN is an extension to the IP protocol. It allows reliable communication by notifying all ends of 
communication when a congestion occurs.
This is done without dropping packets. Please note that since this feature requires all nodes in the 
path (nodes, routers etc) between the communicating nodes to support ECN to ensure reliable 
communication. ECN is marked as 2 bits in the traffic control IP header.
This ENC implementation refers to both RoCE and Routable RoCE. 
ECN command interface is use to configure ECN activity. The access to it is through the file sys-
tem (mount of debugfs is required). The interface provides a set of changeable attributes, and 
information regarding ECN's counters and statistics.
Enabling the ECN command interface is done by setting the en_ecn module parameter of 
mlx4_ib to 1:

options mlx4_ib en_ecn=1

3.1.7.1 Enabling ECN
 To enable ECN on the hosts
 Step 1. Enable ECN in sysfs.  

/proc/sys/net/ipv4/tcp_ecn = 1
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 Step 2. Enable ECN CLI.
options mlx4_ib en_ecn=1

 Step 3. Restart the driver.
/etc/init.d/openibd restart

 Step 4. Mount debugfs to access ECN attributes.
 mount -t debugfs none /sys/kernel/debug/

Please note, mounting of debugfs is required.
The following is an example for ECN configuration through debugfs (echo 1 to enable attribute): 

/sys/kernel/debug/mlx4_ib/<device>/ecn/<algo>/ports/1/params/prios/<prio>/<the 
requested attribute>

ENC supports the following algorithms:
• r_roce_ecn_rp 

• r_roce_ecn_np

Each algorithm has a set of relevant parameters and statistics, which are defined per device, per 
port, per priority.
r_roce_ecn_np has an extra set of general parameters which are defined per device.

ECN and QCN are not compatible. When using ECN, QCN (and all its related dae-
mons/utilities that could enable it, i.e - lldpad) should be turned OFF. 

3.1.7.2 Various ECN Paths
The following are the paths to ECM algorithm, general parameters and counters.
• The path to an algorithm attribute is (except for general parameters):

/sys/kernel/debug/mlx4_ib/{DEVICE}/ ecn/{algorithm}/ports/{port}/params/prios/{prio}/
{attribute}

• The path to a general parameter is:
/sys/kernel/debug/mlx4_ib/{DEVICE}/ ecn/r_roce_ecn_np/gen_params/{attribute}

• The path to a counter is:
/sys/kernel/debug/mlx4_ib/{DEVICE}/ ecn/{algorithm}/ports/{port}/statistics/prios/
{prio}/{counter}

3.1.8 Power Management
pm_qos API is used by mlx4_en, to enforce minimum DMA latency requirement on the system 
when ingress traffic is detected. Additionally, it decreases packet loss on systems configured with 
abundant power state profile when Flow Control is disabled.
The pm_qos API contains the following functions:
• pm_qos_add_request
• pm_qos_update_request
• pm_qos_remove_request
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pm_qos feature is both global and static, once a request is issued, it is enforced on all CPUs and 
does not change in time.
MLNX_OFED provides an option to trigger a request when required and to remove it when no 
longer required. It is disabled by default and can be set/unset through the ethtool priv-flags.
For further information on how to enable/disable this feature, please refer to Table 3, “ethtool 
Supported Options,” on page 50.

3.1.9 RSS Hash Function
The device has the ability to use XOR as the RSS distribution function, instead of the default 
Toplitz function.
The XOR function can be better distributed among driver's receive queues in small number of 
streams, where it distributes each TCP/UDP stream to a different queue. 
MLNX_OFED provides an option to change the working RSS hash function from Toplitz to 
XOR (and vice versa) through ethtool priv-flags.
For further information, please refer to Table 3, “ethtool Supported Options,” on page 50.

3.1.10 Time-Stamping

3.1.10.1  Time-Stamping Service

Time Stamping is currently supported in ConnectX®-3/ConnectX®-3 Pro adapter 
cards only.

Time stamping is the process of keeping track of the creation of a packet. A time-stamping ser-
vice supports assertions of proof that a datum existed before a particular time. Incoming packets 
are time-stamped before they are distributed on the PCI depending on the congestion in the PCI 
buffers. Outgoing packets are time-stamped very close to placing them on the wire.

Enabling Time Stamping
Time-stamping is off by default and should be enabled before use. 
 To enable time stamping for a socket:
• Call setsockopt() with SO_TIMESTAMPING and with the following flags:

   SOF_TIMESTAMPING_TX_HARDWARE:  try to obtain send time stamp in hardware
   SOF_TIMESTAMPING_TX_SOFTWARE:  if SOF_TIMESTAMPING_TX_HARDWARE is off or
                                  fails, then do it in software
   SOF_TIMESTAMPING_RX_HARDWARE:  return the original, unmodified time stamp
                                  as generated by the hardware
   SOF_TIMESTAMPING_RX_SOFTWARE:  if SOF_TIMESTAMPING_RX_HARDWARE is off or
                                  fails, then do it in software
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 To enable time stamping for a net device:
Admin privileged user can enable/disable time stamping through calling ioctl (sock, SIOCSH-
WTSTAMP, &ifreq) with following values:
Send side time sampling:
• Enabled by ifreq.hwtstamp_config.tx_type when

/* possible values for hwtstamp_config->tx_type */
enum hwtstamp_tx_types {
        /*
         * No outgoing packet will need hardware time stamping;
         * should a packet arrive which asks for it, no hardware
         * time stamping will be done.
        */
        HWTSTAMP_TX_OFF,

        /*
         * Enables hardware time stamping for outgoing packets;
         * the sender of the packet decides which are to be
         * time stamped by setting %SOF_TIMESTAMPING_TX_SOFTWARE
         * before sending the packet.
         */
        HWTSTAMP_TX_ON,
  /*
         * Enables time stamping for outgoing packets just as
         * HWTSTAMP_TX_ON does, but also enables time stamp insertion
         * directly into Sync packets. In this case, transmitted Sync
         * packets will not received a time stamp via the socket error
         * queue.
         */
        HWTSTAMP_TX_ONESTEP_SYNC,
};
Note: for send side time stamping currently only HWTSTAMP_TX_OFF and
HWTSTAMP_TX_ON are supported.

   SOF_TIMESTAMPING_RAW_HARDWARE: return original raw hardware time stamp
   SOF_TIMESTAMPING_SYS_HARDWARE: return hardware time stamp transformed to
                                  the system time base
   SOF_TIMESTAMPING_SOFTWARE:     return system time stamp generated in
                                  software
   SOF_TIMESTAMPING_TX/RX determine how time stamps are generated.
   SOF_TIMESTAMPING_RAW/SYS determine how they are reported
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     Receive side time sampling:
• Enabled by ifreq.hwtstamp_config.rx_filter when

/* possible values for hwtstamp_config->rx_filter */
enum hwtstamp_rx_filters {
        /* time stamp no incoming packet at all */
        HWTSTAMP_FILTER_NONE,

        /* time stamp any incoming packet */
        HWTSTAMP_FILTER_ALL,
      /* return value: time stamp all packets requested plus some others */
        HWTSTAMP_FILTER_SOME,

        /* PTP v1, UDP, any kind of event packet */
        HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
        /* PTP v1, UDP, Sync packet */
        HWTSTAMP_FILTER_PTP_V1_L4_SYNC,
        /* PTP v1, UDP, Delay_req packet */
        HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ,
        /* PTP v2, UDP, any kind of event packet */
        HWTSTAMP_FILTER_PTP_V2_L4_EVENT,
        /* PTP v2, UDP, Sync packet */
        HWTSTAMP_FILTER_PTP_V2_L4_SYNC,
        /* PTP v2, UDP, Delay_req packet */
        HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ,
   
        /* 802.AS1, Ethernet, any kind of event packet */
        HWTSTAMP_FILTER_PTP_V2_L2_EVENT,
        /* 802.AS1, Ethernet, Sync packet */
        HWTSTAMP_FILTER_PTP_V2_L2_SYNC,
        /* 802.AS1, Ethernet, Delay_req packet */
        HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ,

        /* PTP v2/802.AS1, any layer, any kind of event packet */
        HWTSTAMP_FILTER_PTP_V2_EVENT,
        /* PTP v2/802.AS1, any layer, Sync packet */
        HWTSTAMP_FILTER_PTP_V2_SYNC,
        /* PTP v2/802.AS1, any layer, Delay_req packet */
        HWTSTAMP_FILTER_PTP_V2_DELAY_REQ,
};
Note: for receive side time stamping currently only HWTSTAMP_FILTER_NONE and
HWTSTAMP_FILTER_ALL are supported.

Getting Time Stamping
Once time stamping is enabled time stamp is placed in the socket Ancillary data. recvmsg() can 
be used to get this control message for regular incoming packets. For send time stamps the outgo-
ing packet is looped back to the socket's error queue with the send time stamp(s) attached. It can
be received with recvmsg(flags=MSG_ERRQUEUE). The call returns the original outgoing 
packet data including all headers preprended down to and including the link layer, the 
scm_timestamping control message and a sock_extended_err control message with 
ee_errno==ENOMSG and ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such 
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a pending bounced packet is ready for reading as far as select() is concerned. If the outgoing 
packet has to be fragmented, then only the first fragment is time stamped and returned to the 
sending socket.

When time-stamping is enabled, VLAN stripping is disabled. For more info please 
refer to Documentation/networking/timestamping.txt in kernel.org

Querying Time Stamping Capabilities via ethtool
 To display Time Stamping capabilities via ethtool:
• Show Time Stamping capabilities

ethtool -T eth<x>

Example:
ethtool -T eth0
Time stamping parameters for p2p1:
Capabilities:
        hardware-transmit     (SOF_TIMESTAMPING_TX_HARDWARE)
        software-transmit     (SOF_TIMESTAMPING_TX_SOFTWARE)
        hardware-receive      (SOF_TIMESTAMPING_RX_HARDWARE)
        software-receive      (SOF_TIMESTAMPING_RX_SOFTWARE)
        software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
        hardware-raw-clock    (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
        off                   (HWTSTAMP_TX_OFF)
        on                    (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
        none                  (HWTSTAMP_FILTER_NONE)
        all                   (HWTSTAMP_FILTER_ALL)

For more details on PTP Hardware Clock, please refer to:
https://www.kernel.org/doc/Documentation/ptp/ptp.txt

3.1.10.2 RoCE Time Stamping

RoCE Time Stamping is currently at beta level.
Please be aware that everything listed here is subject to change.

RoCE Time Stamping allows you to stamp packets when they are sent to the wire / received from 
the wire. The time stamp is given in a raw hardware cycles, but could be easily converted into 
hardware referenced nanoseconds based time. Additionally, it enables you to query the hardware 
for the hardware time, thus stamp other application's event and compare time.

Query Capabilities
Time stamping is available if and only the hardware reports it is capable of reporting it. To verify 
whether RoCE Time Stamping is available, run ibv_exp_query_device. 
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For example:
struct ibv_exp_device_attr attr;
ibv_exp_query_device(context, &attr);
if (attr.comp_mask & IBV_EXP_DEVICE_ATTR_WITH_TIMESTAMP_MASK) {
if (attr.timestamp_mask) {
       /* Time stamping is supported with mask attr.timestamp_mask */
        }
}
if (attr.comp_mask & IBV_EXP_DEVICE_ATTR_WITH_HCA_CORE_CLOCK) {
        if (attr.hca_core_clock) {
        /* reporting the device's clock is supported. */ 
  /* attr.hca_core_clock is the frequency in MHZ */
        }
}

Creating Time Stamping Completion Queue
To get time stamps, a suitable extended Completion Queue (CQ) must be created via a special 
call to ibv_exp_create_cq verb.

cq_init_attr.flags = IBV_EXP_CQ_TIMESTAMP;
cq_init_attr.comp_mask = IBV_EXP_CQ_INIT_ATTR_FLAGS;
cq = ibv_exp_create_cq(context, cqe, node, NULL, 0, &cq_init_attr);

This CQ cannot report SL or SLID information. The value of sl and sl_id fields in 
struct ibv_exp_wc are invalid. Only the fields indicated by the exp_wc_flags field 
in struct ibv_exp_wc contains a valid and usable value.

When using Time Stamping, several fields of struct ibv_exp_wc are not available 
resulting in RoCE UD / RoCE traffic with VLANs failure.

Polling a Completion Queue
Polling a CQ for time stamp is done via the ibv_exp_poll_cq verb.

ret = ibv_exp_poll_cq(cq, 1, &wc_ex, sizeof(wc_ex));
if (ret > 0) {

/* CQ returned a wc */
if (wc_ex.exp_wc_flags & IBV_EXP_WC_WITH_TIMESTAMP) {
/* This wc contains a timestamp */
timestamp = wc_ex.timestamp;
/* Timestamp is given in raw hardware time */
}

}

CQs that are opened with the ibv_exp_create_cq verbs should be always be polled 
with the ibv_exp_poll_cq verb.
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Querying the Hardware Time
Querying the hardware for time is done via the ibv_exp_query_values verb.
For example:

ret = ibv_exp_query_values(context, IBV_EXP_VALUES_HW_CLOCK, &queried_values);
if (!ret && queried_values.comp_mask & IBV_EXP_VALUES_HW_CLOCK)
queried_time = queried_values.hwclock;

To change the queried time in nanoseconds resolution, use the IBV_EXP_VALUES_HW_CLOCK_NS
flag along with the hwclock_ns field.

ret = ibv_exp_query_values(context, IBV_EXP_VALUES_HW_CLOCK_NS, &queried_values);
if (!ret && queried_values.comp_mask & IBV_EXP_VALUES_HW_CLOCK_NS)
queried_time_ns = queried_values.hwclock_ns;

Querying the Hardware Time is available only on physical functions / native machines.

3.1.11 Flow Steering

Flow Steering is applicable to the mlx4 driver only.

Flow steering is a new model which steers network flows based on flow specifications to specific 
QPs. Those flows can be either unicast or multicast network flows. In order to maintain flexibil-
ity, domains and priorities are used. Flow steering uses a methodology of flow attribute, which is 
a combination of L2-L4 flow specifications, a destination QP and a priority. Flow steering rules 
may be inserted either by using ethtool or by using InfiniBand verbs. The verbs abstraction uses a 
different terminology from the flow attribute (ibv_exp_flow_attr), defined by a combination of 
specifications (struct ibv_exp_flow_spec_*).

3.1.11.1 Enable/Disable Flow Steering
Flow steering is generally enabled when the log_num_mgm_entry_size module parameter is non 
positive (e.g., -log_num_mgm_entry_size), meaning the absolute value of the parameter, is a bit 
field. Every bit indicates a condition or an option regarding the flow steering mechanism:

bit Operation Description

b0 Force device managed Flow 
Steering

When set to 1, it forces HCA to be enabled regardless of 
whether NC-SI Flow Steering is supported or not.
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For example, a value of (-7) means forcing flow steering regardless of NC-SI flow steering sup-
port, disabling IPoIB flow steering support and enabling A0 static DMFS steering.
The default value of log_num_mgm_entry_size is -10. Meaning Ethernet Flow Steering (i.e 
IPoIB DMFS is disabled by default) is enabled by default if NC-SI DMFS is supported and the 
HCA supports at least 64 QPs per MCG entry. Otherwise, L2 steering (B0) is used. 
When using SR-IOV, flow steering is enabled if there is an adequate amount of space to store the 
flow steering table for the guest/master.
 To enable Flow Steering: 
 Step 1. Open the /etc/modprobe.d/mlnx.conf file.
 Step 2. Set the parameter log_num_mgm_entry_size to a non positive value by writing the option 

mlx4_core log_num_mgm_entry_size=<value>.
 Step 3. Restart the driver
 To disable Flow Steering: 
 Step 1. Open the /etc/modprobe.d/mlnx.conf file.
 Step 2. Remove the options mlx4_core log_num_mgm_entry_size= <value>.
 Step 3. Restart the driver

3.1.11.2 Flow Steering Support
 To determine which Flow Steering features are supported:

ethtool --show-priv-flags eth4

The following output is shown:
mlx4_flow_steering_ethernet_l2: on       Creating Ethernet L2 (MAC) rules is supported
mlx4_flow_steering_ipv4: on              Creating IPv4 rules is supported
mlx4_flow_steering_tcp: on               Creating TCP/UDP rules is supported

b1 Disable IPoIB Flow Steering When set to 1, it disables the support of IPoIB Flow Steer-
ing.
This bit should be set to 1 when "b2- Enable A0 static 
DMFS steering" is used (see Section 3.1.11.3, “A0 Static 
Device Managed Flow Steering”, on page 69).

b2 Enable A0 static DMFS 
steering (see 
Section 3.1.11.3, “A0 Static 
Device Managed Flow Steer-
ing”, on page 69)

When set to 1, A0 static DMFS steering is enabled. This 
bit should be set to 0 when "b1- Disable IPoIB Flow Steer-
ing" is 0.

b3 Enable DMFS only if the 
HCA supports more than 
64QPs per MCG entry

When set to 1, DMFS is enabled only if the HCA supports 
more than 64 QPs attached to the same rule. For example, 
attaching 64VFs to the same multicast address causes 
64QPs to be attached to the same MCG. If the HCA sup-
ports less than 64 QPs per MCG, B0 is used.

bit Operation Description
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Flow Steering support in InfiniBand is determined according to the 
EXP_MANAGED_FLOW_STEERING flag.

3.1.11.3 A0 Static Device Managed Flow Steering
This mode enables fast steering, however it might impact flexibility. Using it increases the packet 
rate performance by ~30%, with the following limitations for Ethernet link-layer unicast QPs:
• Limits the number of opened RSS Kernel QPs to 96. MACs should be unique (1 MAC 

per 1 QP). The number of VFs is limited.
• When creating Flow Steering rules for user QPs, only MAC--> QP rules are allowed. 

Both MACs and QPs should be unique between rules. Only 62 such rules could be cre-
ated

• When creating rules with Ethtool, MAC--> QP rules could be used, where the QP must 
be the indirection (RSS) QP. Creating rules that indirect traffic to other rings is not 
allowed. Ethtool MAC rules to drop packets (action -1) are supported.

• RFS is not supported in this mode
• VLAN is not supported in this mode

3.1.11.4 Flow Domains and Priorities
Flow steering defines the concept of domain and priority. Each domain represents a user agent 
that can attach a flow. The domains are prioritized. A higher priority domain will always super-
sede a lower priority domain when their flow specifications overlap. Setting a lower priority 
value will result in higher priority.
In addition to the domain, there is priority within each of the domains. Each domain can have at 
most 2^12 priorities in accordance with its needs. 
The following are the domains at a descending order of priority:
• User Verbs allows a user application QP to be attached into a specified flow when using 

ibv_exp_create_flow and ibv_exp_destroy_flow verbs
• ibv_exp_create_flow

struct ibv_exp_flow *ibv_exp_create_flow(struct ibv_qp *qp, struct ibv_exp_flow_attr 
*flow)

 

Input parameters:
• struct ibv_qp - the attached QP. 
• struct ibv_exp_flow_attr - attaches the QP to the flow specified. The flow contains mandatory 

control parameters and optional L2, L3 and L4 headers. The optional headers are detected by setting the 
size and num_of_specs fields:

struct ibv_exp_flow_attr can be followed by the optional flow headers structs:
struct ibv_exp_flow_spec_ib
struct ibv_exp_flow_spec_eth
struct ibv_exp_flow_spec_ipv4
struct ibv_exp_flow_spec_tcp_udp

For further information, please refer to the ibv_exp_create_flow man page. 
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Be advised that as of MLNX_OFED v2.0-3.0.0, the parameters (both the value and the 
mask) should be set in big-endian format.

Each header struct holds the relevant network layer parameters for matching. To enforce the match, the 
user sets a mask for each parameter. The supported masks are:
• All one mask - include the parameter value in the attached rule 

Note: Since the VLAN ID in the Ethernet header is 12bit long, the following parameter should be 
used: flow_spec_eth.mask.vlan_tag = htons(0x0fff). 

• All zero mask - ignore the parameter value in the attached rule
When setting the flow type to NORMAL, the incoming traffic will be steered according to the rule spec-
ifications. ALL_DEFAULT and MC_DEFAULT rules options are valid only for Ethernet link type since 
InfiniBand link type packets always include QP number.
For further information, please refer to the relevant man pages.

• ibv_exp_destroy_flow

int ibv_exp_destroy_flow(struct ibv_exp_flow *flow_id)

 

Input parameters:
ibv_exp_destroy_flow requires struct ibv_exp_flow which is the return value of 
ibv_exp_create_flow in case of success.
Output parameters:
Returns 0 on success, or the value of errno on failure.
For further information, please refer to the ibv_exp_destroy_flow man page.

• Ethtool
Ethtool domain is used to attach an RX ring, specifically its QP to a specified flow. 
Please refer to the most recent ethtool manpage for all the ways to specify a flow.
Examples:
• ethtool –U eth5 flow-type ether dst 00:11:22:33:44:55 loc 5 action 2

All packets that contain the above destination MAC address are to be steered into rx-ring 2 (its 
underlying QP), with priority 5 (within the ethtool domain)

• ethtool –U eth5 flow-type tcp4 src-ip 1.2.3.4 dst-port 8888 loc 5 action 2
All packets that contain the above destination IP address and source port are to be steered into rx-
ring 2. When destination MAC is not given, the user's destination MAC is filled automatically.

• ethtool -U eth5 flow-type ether dst 00:11:22:33:44:55 vlan 45 m 0xf000 loc 5 action 2
All packets that contain the above destination MAC address and specific VLAN are steered into 
ring 2. Please pay attention to the VLAN's mask 0xf000. It is required in order to add such a rule.

• ethtool –u eth5
Shows all of ethtool’s steering rule

When configuring two rules with the same priority, the second rule will overwrite the first one, 
so this ethtool interface is effectively a table. Inserting Flow Steering rules in the kernel 
requires support from both the ethtool in the user space and in kernel (v2.6.28). 
MLX4 Driver Support
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The mlx4 driver supports only a subset of the flow specification the ethtool API defines. Ask-
ing for an unsupported flow specification will result with an “invalid value” failure.
The following are the flow specific parameters:

ether tcp4/udp4 ip4

Mandatory dst src-ip/dst-ip
Optional vlan src-ip, dst-ip, src-

port, dst-port, vlan
src-ip, dst-ip, vlan

• RFS
RFS is an in-kernel-logic responsible for load balancing between CPUs by attaching flows to 
CPUs that are used by flow’s owner applications. This domain allows the RFS mechanism to 
use the flow steering infrastructure to support the RFS logic by implementing the 
ndo_rx_flow_steer, which, in turn, calls the underlying flow steering mechanism with the 
RFS domain.
Enabling the RFS requires enabling the ‘ntuple’ flag via the ethtool,
For example, to enable ntuple for eth0, run:

ethtool -K eth0 ntuple on

RFS requires the kernel to be compiled with the CONFIG_RFS_ACCEL option. This options is 
available in kernels 2.6.39 and above. Furthermore, RFS requires Device Managed Flow Steer-
ing support.

RFS cannot function if LRO is enabled. LRO can be disabled via ethtool.

• All of the rest
The lowest priority domain serves the following users:
• The mlx4 Ethernet driver attaches its unicast and multicast MACs addresses to its QP 

using L2 flow specifications
• The mlx4 ipoib driver when it attaches its QP to his configured GIDS

Fragmented UDP traffic cannot be steered. It is treated as 'other' protocol by hardware 
(from the first packet) and not considered as UDP traffic.

We recommend using libibverbs v2.0-3.0.0 and libmlx4 v2.0-3.0.0 and higher as 
of MLNX_OFED v2.0-3.0.0 due to API changes.
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3.2 InfiniBand Network

3.2.1 Interface

3.2.1.1 Port Type Management
ConnectX ports can be individually configured to work as InfiniBand or Ethernet ports. By 
default both ConnectX ports are initialized as InfiniBand ports. If you wish to change the port 
type use the connectx_port_config script after the driver is loaded.
Running “/sbin/connectx_port_config -s” will show current port configuration for all 
ConnectX devices.
Port configuration is saved in the file: /etc/infiniband/connectx.conf. This saved con-
figuration is restored at driver restart only if restarting via “/etc/init.d/openibd 
restart”.
Possible port types are:
• eth – Ethernet
• ib – Infiniband
• auto – Link sensing mode - Detect port type based on the attached network type. If no 

link is detected, the driver retries link sensing every few seconds.
The port link type can be configured for each device in the system at run time using the “/sbin/
connectx_port_config” script. This utility will prompt for the PCI device to be modified (if 
there is only one it will be selected automatically).
In the next stage the user will be prompted for the desired mode for each port. The desired port 
configuration will then be set for the selected device.

This utility also has a non-interactive mode:
/sbin/connectx_port_config [[-d|--device <PCI device ID>] -c|--conf <port1,port2>]"

Auto Sensing enables the NIC to automatically sense the link type (InfiniBand or Ethernet) based 
on the link partner and load the appropriate driver stack (InfiniBand or Ethernet).

For example, if the first port is connected to an InfiniBand switch and the second to Ethernet 
switch, the NIC will automatically load the first switch as InfiniBand and the second as Ethernet.

Upon driver start up:
1. Sense the adapter card’s port type:

If a valid cable or module is connected (QSFP, SFP+, or SFP with EEPROM in the cable/mod-
ule):
• Set the port type to the sensed link type (IB/Ethernet)

Otherwise:
• Set the port type as default (Ethernet)

During driver run time:
•  Sense a link every 3 seconds if no link is sensed/detected
•  If sensed, set the port type as sensed
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3.2.2 OpenSM
OpenSM is an InfiniBand compliant Subnet Manager (SM). It is provided as a fixed flow execut-
able called “opensm”, accompanied by a testing application called “osmtest”. OpenSM imple-
ments an InfiniBand compliant SM according to the InfiniBand Architecture Specification 
chapters: Management Model (13), Subnet Management (14), and Subnet Administration (15).

3.2.2.1 opensm
opensm is an InfiniBand compliant Subnet Manager and Subnet Administrator that runs on top of 
the Mellanox OFED stack. opensm performs the InfiniBand specification’s required tasks for ini-
tializing InfiniBand hardware. One SM must be running for each InfiniBand subnet.
opensm also provides an experimental version of a performance manager.
opensm defaults were designed to meet the common case usage on clusters with up to a few hun-
dred nodes. Thus, in this default mode, opensm will scan the IB fabric, initialize it, and sweep 
occasionally for changes.
opensm attaches to a specific IB port on the local machine and configures only the fabric con-
nected to it. (If the local machine has other IB ports, opensm will ignore the fabrics connected to 
those other ports). If no port is specified, opensm will select the first “best” available port. 
opensm can also present the available ports and prompt for a port number to attach to.
By default, the opensm run is logged to two files: /var/log/messages and /var/log/
opensm.log. The first file will register only general major events, whereas the second file will 
include details of reported errors. All errors reported in this second file should be treated as indi-
cators of IB fabric health issues. (Note that when a fatal and non-recoverable error occurs, 
opensm will exit). Both log files should include the message "SUBNET UP" if opensm was able 
to setup the subnet correctly.
Syntax

opensm [OPTIONS]

For the complete list of opensm options, please run:
opensm --help / -h / -?

 

3.2.2.1.1 Environment Variables
The following environment variables control opensm behavior:
• OSM_TMP_DIR

Controls the directory in which the temporary files  generated by opensm are created. These 
files are: opensm-subnet.lst, opensm.fdbs, and opensm.mcfdbs. By default, this direc-
tory is /var/log.

• OSM_CACHE_DIR
opensm stores certain data to the disk such that subsequent runs are consistent. The default 
directory   used is /var/cache/opensm. The following file is included in it:
• guid2lid – stores the LID range assigned to each GUID

3.2.2.1.2 Signaling
When OpenSM receives a HUP signal, it starts a new heavy sweep as if a trap has been received 
or a topology change has been found.
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Also, SIGUSR1 can be used to trigger a reopen of /var/log/opensm.log for logrotate pur-
poses.

3.2.2.1.3 Running opensm
The defaults of opensm were designed to meet the common case usage on clusters with up to a 
few hundred nodes. Thus, in this default mode, opensm will scan the IB fabric, initialize it, and 
sweep occasionally for changes. 
To run opensm in the default mode, simply enter:

host1# opensm

Note that opensm needs to be run on at least one machine in an IB subnet.
By default, an opensm run is logged to two files: /var/log/messages and /var/log/
opensm.log. The first file, message, registers only general major events; the second file, 
opensm.log, includes details of reported errors. All errors reported in opensm.log should be 
treated as indicators of IB fabric health. Both log files should include the message “SUBNET 
UP” if opensm was able to setup the subnet correctly.

If a fatal, non-recoverable error occurs, opensm exits.

3.2.2.1.4 Running OpenSM As Daemon
OpenSM can also run as daemon. To run OpenSM in this mode, enter:

host1# /etc/init.d/opensmd start

3.2.2.2 osmtest
osmtest is a test program for validating the InfiniBand Subnet Manager and Subnet Administra-
tor. osmtest provides a test suite for opensm. It can create an inventory file of all available nodes, 
ports, and PathRecords, including all their fields. It can also verify the existing inventory with all 
the object fields, and matches it to a pre-saved one. See Section 3.2.2.2.1.
osmtest has the following test flows:
• Multicast Compliancy test
• Event Forwarding test
• Service Record registration test
• RMPP stress test
• Small SA Queries stress test
Syntax

osmtest [OPTIONS]

For the complete list of osmtest options, please run:
osmtest--help / -h / -?

 

3.2.2.2.1 Running osmtest
To run osmtest in the default mode, simply enter:

host1# osmtest
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The default mode runs all the flows except for the Quality of Service flow (see Section 3.2.2.6).
After installing opensm (and if the InfiniBand fabric is stable), it is recommended to run the fol-
lowing command in order to generate the inventory file:

host1# osmtest -f c 

Immediately afterwards, run the following command to test opensm:
host1# osmtest -f a

Finally, it is recommended to occasionally run “osmtest -v” (with verbosity) to verify that noth-
ing in the fabric has changed.

3.2.2.3 Partitions
OpenSM enables the configuration of partitions (PKeys) in an InfiniBand fabric. By default, 
OpenSM searches for the partitions configuration file under the name /usr/etc/opensm/par-
titions.conf. To change this filename, you can use opensm with the ‘--Pconfig’ or ‘-P’ flags.
The default partition is created by OpenSM unconditionally, even when a partition configuration 
file does not exist or cannot be accessed.
The default partition has a P_Key value of 0x7fff. The port out of which runs OpenSM is 
assigned full membership in the default partition. All other end-ports are assigned partial mem-
bership.

3.2.2.3.1 File Format
Notes:
• Line content followed after ‘#’ character is comment and ignored by parser.
General File Format

<Partition Definition>:[<newline>]<Partition Properties>

• <Partition Definition>:
[PartitionName][=PKey][,ipoib_bc_flags][,defmember=full|limited]

where
PartitionName String, will be used with logging. When omitted 

empty string will be used.

PKey P_Key value for this partition. Only low 15 bits 
will be used. When omitted will be auto-generated.

ipoib_bc_flags Used to indicate/specify IPoIB capability of this 
partition.

defmember=full|limited|both Specifies default membership for port GUID list. 
Default is limited.

ipoib_bc_flags are:
ipoib Indicates that this partition may be used for IPoIB, as a result the 

IPoIB broadcast group will be created with the flags given, if any.

rate=<val> Specifies rate for this IPoIB MC group (default is 3 (10GBps))

mtu=<val> Specifies MTU for this IPoIB MC group (default is 4 (2048))

sl=<val> Specifies SL for this IPoIB MC group (default is 0)

scope=<val> Specifies scope for this IPoIB MC group (default is 2 (link local))
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• <Partition Properties>:
[<Port list>|<MCast Group>]* | <Port list>

• <Port List>:
<Port Specifier>[,<Port Specifier>]

• <Port Specifier>:
<PortGUID>[=[full|limited|both]]

where
PortGUID GUID of partition member EndPort. Hexadecimal numbers should 

start from 0x, decimal numbers are accepted too.

full, limited Indicates full and/or limited membership for this both port. 
When omitted (or unrecognized) limited membership is assumed. 
Both indicates both full and limited membership for this 
port.

• <MCast Group>:
mgid=gid[,mgroup_flag]*<newline>

where

mgid=gid gid specified is verified to be a Multicast address IP groups are ver-
ified to match the rate and mtu of the broadcast group. The P_Key bits 
of the mgid for IP groups are verified to either match the P_Key spec-
ified in by "Partition Definition" or if they are 0x0000 the P_Key 
will be copied into those bits.

mgroup_flag rate=<val> Specifies rate for this MC group (default 
is 3 (10GBps))

mtu=<val> Specifies MTU for this MC group (default is 
4 (2048))

sl=<val> Specifies SL for this MC group (default is 
0)

scope=<val> Specifies scope for this MC group (default 
is 2 (link local)). Multiple scope settings 
are permitted for a partition. 
NOTE: This overwrites the scope nibble of 
the specified mgid. Furthermore specifying 
multiple scope settings will result in mul-
tiple MC groups being created.

qkey=<val> Specifies the Q_Key for this MC group 
(default: 0x0b1b for IP groups, 0 for other 
groups)

tclass=<val> Specifies tclass for this MC group (default 
is 0)

FlowLabel=<val> Specifies FlowLabel for this MC group 
(default is 0)

Note that values for rate, MTU, and scope should be specified as defined in the IBTA specifica-
tion (for example, mtu=4 for 2048). To use 4K MTU, edit that entry to "mtu=5" (5 indicates 4K 
MTU to that specific partition).
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PortGUIDs list:
PortGUID GUID of partition member EndPort. Hexadecimal numbers should start 
from 0x, decimal numbers are accepted too.
full or limited indicates full or limited membership for this port. When omitted (or 
unrecognized) limited membership is assumed.

There are two useful keywords for PortGUID definition:
• 'ALL' means all end ports in this subnet.
• 'ALL_CAS' means all Channel Adapter end ports in this subnet.
• 'ALL_SWITCHES' means all Switch end ports in this subnet.
• 'ALL_ROUTERS' means all Router end ports in this subnet.
• 'SELF' means subnet manager's port.An empty list means that there are no ports in this 

partition.
Notes:
• White space is permitted between delimiters ('=', ',',':',';').
• PartitionName does not need to be unique, PKey does need to be unique. If PKey is 

repeated then those partition configurations will be merged and first PartitionName will 
be used (see also next note).

• It is possible to split partition configuration in more than one definition, but then PKey 
should be explicitly specified (otherwise different PKey values will be generated for 
those definitions).

Examples
Default=0x7fff : ALL, SELF=full ;
Default=0x7fff : ALL, ALL_SWITCHES=full, SELF=full ;

NewPartition , ipoib : 0x123456=full, 0x3456789034=limi, 0x2134af2306 ;

YetAnotherOne = 0x300 : SELF=full ;
YetAnotherOne = 0x300 : ALL=limited ;

ShareIO = 0x80 , defmember=full : 0x123451, 0x123452;
# 0x123453, 0x123454 will be limited
ShareIO = 0x80 : 0x123453, 0x123454, 0x123455=full;
# 0x123456, 0x123457 will be limited
ShareIO = 0x80 : defmember=limited : 0x123456, 0x123457, 0x123458=full;
ShareIO = 0x80 , defmember=full : 0x123459, 0x12345a;
ShareIO = 0x80 , defmember=full : 0x12345b, 0x12345c=limited, 0x12345d;

# multicast groups added to default
Default=0x7fff,ipoib:
mgid=ff12:401b::0707,sl=1 # random IPv4 group
mgid=ff12:601b::16 # MLDv2-capable routers
mgid=ff12:401b::16 # IGMP
mgid=ff12:601b::2 # All routers
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The following rule is equivalent to how OpenSM used to run prior to the partition manager:
Default=0x7fff,ipoib:ALL=full;

3.2.2.4 Effect of Topology Changes
If a link is added or removed, OpenSM may not recalculate the routes that do not have to change. 
A route has to change if the port is no longer UP or no longer the MinHop. When routing changes 
are performed, the same algorithm for balancing the routes is invoked.

In the case of using the file based routing, any topology changes are currently ignored. The 'file' 
routing engine just loads the LFTs from the file specified, with no reaction to real topology. 
Obviously, this will not be able to recheck LIDs (by GUID) for disconnected nodes, and LFTs 
for non-existent switches will be skipped. Multicast is not affected by 'file' routing engine (this 
uses min hop tables).

3.2.2.5 Routing Algorithms
 OpenSM offers the following routing engines:
1. “Min Hop Algorithm”

Based on the minimum hops to each node where the path length is optimized.
2. “UPDN Algorithm”

Based on the minimum hops to each node, but it is constrained to ranking rules. This algorithm 
should be chosen if the subnet is not a pure Fat Tree, and a deadlock may occur due to a loop in 
the subnet.

3. “Fat-tree Routing Algorithm”
This algorithm optimizes routing for a congestion-free “shift” communication pattern. It should 
be chosen if a subnet is a symmetrical Fat Tree of various types, not just a K-ary-N-Tree: non-
constant K, not fully staffed, and for any CBB ratio. Similar to UPDN, Fat Tree routing is con-
strained to ranking rules.

4. “LASH Routing Algorithm”
Uses InfiniBand virtual layers (SL) to provide deadlock-free shortest-path routing while also 
distributing the paths between layers. LASH is an alternative deadlock-free, topology-agnostic 
routing algorithm to the non-minimal UPDN algorithm. It avoids the use of a potentially con-
gested root node.

5. “DOR Routing Algorithm”
Based on the Min Hop algorithm, but avoids port equalization except for redundant links 
between the same two switches. This provides deadlock free routes for hypercubes when the 
fabric is cabled as a hypercube and for meshes when cabled as a mesh.

6. “Torus-2QoS Routing Algorithm”
Based on the DOR Unicast routing algorithm specialized for 2D/3D torus topologies. Torus-
2QoS provides deadlock-free routing while supporting two quality of service (QoS) levels. 
Additionally, it can route around multiple failed fabric links or a single failed fabric switch 
without introducing deadlocks, and without changing path SLvalues granted before the failure.

mgid=ff12::1,sl=1,Q_Key=0xDEADBEEF,rate=3,mtu=2 # random group
ALL=full;
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7. “Unicast Routing Cache”
Unicast routing cache prevents routing recalculation (which is a heavy task in a large cluster) 
when no topology change was detected during the heavy sweep, or when the topology change 
does not require new routing calculation (for example, when one or more CAs/RTRs/leaf 
switches going down, or one or more of these nodes coming back after being down).

8. “Routing Chains”
Allows routing configuration of different parts of a single InfiniBand subnet by different rout-
ing engines. In the current release, minhop/updn/ftree/dor/torus-2QoS can be combined.

OpenSM also supports a file method which can load routes from a table – see Modular Routing 
Engine below.
MINHOP/UPDN/DOR routing algorithms are comprised of two stages:
1. MinHop matrix calculation. How many hops are required to get from each port to each LID? 

The algorithm to fill these tables is different if you run  standard (min hop) or Up/Down. For 
standard routing, a "relaxation" algorithm is used to propagate min hop from every destina-
tion LID through neighbor switches. For Up/Down routing, a BFS from every target is used. 
The BFS tracks link  direction (up or down) and avoid steps that will perform up after a down 
step was used.

2. Once MinHop matrices exist, each switch is visited and for each target LID a  decision  is 
made as to what port should be used to get to that LID. This step is common to standard and 
Up/Down routing. Each port has a counter counting the number of target LIDs going through 
it. When there are multiple alternative ports with same MinHop to a LID, the one with less 
previously assigned ports is selected.
If LMC > 0, more  checks  are  added. Within  each  group  of  LIDs assigned to same target 
port:
a. Use only ports which have same MinHop
b. First prefer the ones that go to different systemImageGuid (then the previous LID of the same LMC group)

c. If none, prefer those which go through another NodeGuid

d. Fall back to the number of paths method (if all go to same node).

3.2.2.5.1 Min Hop Algorithm
The  Min  Hop algorithm is invoked by default if no routing algorithm is specified.  It can also be 
invoked by specifying '-R minhop'. 
The Min Hop algorithm is divided into two stages: computation  of  min-hop  tables  on  every 
switch and LFT output port assignment. Link subscription is also equalized with the ability to 
override based on port GUID. The latter is supplied by:

-i <equalize-ignore-guids-file>
-ignore-guids <equalize-ignore-guids-file>

This option provides the means to define a set of ports (by guids) 
that will be ignored by the link load equalization algorithm.

LMC awareness routes based on (remote) system or switch basis.

3.2.2.5.2 UPDN Algorithm
The UPDN algorithm is designed to prevent deadlocks from occurring in loops of the subnet. A 
loop-deadlock is a situation in which it is no longer possible to send data between any two hosts 
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connected through the loop. As such, the UPDN routing algorithm should be send if the subnet is 
not a pure Fat Tree, and one of its loops may experience a deadlock (due, for example, to high 
pressure).
The UPDN algorithm is based on the following main stages:
1. Auto-detect root nodes - based on the CA hop length from any switch in the subnet, a statisti-

cal histogram is built for each switch (hop num vs number of occurrences). If the histogram 
reflects a specific column (higher than others) for a certain node, then it is marked as a root 
node. Since the algorithm is statistical, it may not find any root nodes. The list of the root 
nodes found by this auto-detect stage is used by the ranking process stage.

The user can override the node list manually

If this stage cannot find any root nodes, and the user did not specify a guid list file, 
OpenSM defaults back to the Min Hop routing algorithm.

2. Ranking process - All root switch nodes (found in stage 1) are assigned a rank of 0. Using the 
BFS algorithm, the rest of the switch nodes in the subnet are ranked incrementally. This rank-
ing aids in the process of enforcing rules that ensure loop-free paths.

3. Min Hop Table setting - after ranking is done, a BFS algorithm is run from each (CA or 
switch) node in the subnet. During  the  BFS  process, the FDB table of each switch node tra-
versed by BFS is updated, in reference to the starting node, based on the  ranking  rules  and 
guid values.

At the end of the process, the updated FDB tables ensure loop-free paths through the subnet.

Up/Down routing does not allow LID routing communication between switches that 
are located inside spine “switch systems”. The reason is that there is no way to allow a 
LID route between them that does not break the Up/Down rule. One ramification of 
this is that you cannot run SM on switches other than the leaf switches of the fabric.

 UPDN Algorithm Usage

 Activation through OpenSM
• Use '-R updn' option (instead of old '-u') to activate the UPDN algorithm.
• Use '-a <root_guid_file>' for adding an UPDN guid file that contains the root nodes for 

ranking. If the `-a' option is not used, OpenSM uses its auto-detect root nodes algorithm.
Notes on the guid list file:
• A valid guid file specifies one guid in each line. Lines with an invalid format will be dis-

carded
• The user should specify the root switch guids

3.2.2.5.3 Fat-tree Routing Algorithm
The fat-tree algorithm optimizes routing for "shift" communication pattern. It should be chosen if 
a subnet is a symmetrical or almost symmetrical fat-tree of various types. It supports not just K-
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ary-N-Trees, by handling for non-constant K, cases where not all leafs (CAs) are present, any 
Constant Bisectional Ratio (CBB )ratio. As in UPDN, fat-tree also prevents credit-loop-dead-
locks.
If the root guid file is not provided ('-a' or '--root_guid_file' options), the topology has to be 
pure fat-tree that complies with the following rules:
• Tree rank should be between two and eight (inclusively)

• Switches of the same rank should have the same number of UP-going port groups1, 
unless they are root switches, in which case the shouldn't have UP-going ports at all.

• Switches of the same rank should have the same number of DOWN-going port groups, 
unless they are leaf switches.

• Switches of the same rank should have the same number of ports in each UP-going port 
group.

• Switches of the same rank should have the same number of ports in each DOWN-going 
port group.

• All the CAs have to be at the same tree level (rank).
If the root guid file is provided, the topology does not have to be pure fat-tree, and it should only 
comply with the following rules:
• Tree rank should be between two and eight (inclusively)

• All the Compute Nodes2 have to be at the same tree level (rank). Note that non-compute 
node CAs are allowed here to be at different tree ranks.

Topologies that do not comply cause a fallback to min hop routing. Note that this can also occur 
on link failures which cause the topology to no longer be a “pure” fat-tree.
Note that although fat-tree algorithm supports trees with non-integer CBB ratio, the routing will 
not be as balanced as in case of integer CBB ratio. In addition to this, although the algorithm 
allows leaf switches to have any number of CAs, the closer the tree is to be fully populated, the 
more effective the "shift" communication pattern will be. In general, even if the root list is pro-
vided, the closer the topology to a pure and symmetrical fat-tree, the more optimal the routing 
will be.
The algorithm also dumps compute node ordering file (opensm-ftree-ca-order.dump) in 
the same directory where the OpenSM log resides. This ordering file provides the CN order that 
may be used to create efficient communication pattern, that will match the routing tables.

 Routing between non-CN Nodes
The use of the io_guid_file option allows non-CN nodes to be located on different levels in the 
fat tree. In such case, it is not guaranteed that the Fat Tree algorithm will route between two non-
CN nodes. In the scheme below, N1, N2 and N3 are non-CN nodes. Although all the CN have 
routes to and from them, there will not necessarily be a route between N1,N2 and N3. Such 
routes would require to use at least one of the switches the wrong way around.

  Spine1   Spine2    Spine 3
   / \     /  |  \    /   \
  /   \   /   |   \  /     \
 N1  Switch   N2  Switch    N3

1. Ports that are connected to the same remote switch are referenced as ‘port group’
2. List  of compute nodes (CNs) can be specified by ‘-u’ or ‘--cn_guid_file’ OpenSM options.
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      /|\          /|\
     / | \        / | \
    Going down to compute nodes

To solve this problem, a list of non-CN nodes can be specified by \'-G\' or \'--io_guid_file\' 
option. These nodes will be allowed to use switches the wrong way around a specific number of 
times (specified by \'-H\' or \'--max_reverse_hops\'. With the proper max_reverse_hops and 
io_guid_file values, you can ensure full connectivity in the Fat Tree. In the scheme above, with a 
max_reverse_hop of 1, routes will be instanciated between N1<->N2 and N2<->N3. With a 
max_reverse_hops value of 2, N1,N2 and N3 will all have routes between them.

Using max_reverse_hops creates routes that use the switch in a counter-stream way. 
This option should never be used to connect nodes with high bandwidth traffic 
between them! It should only be used to allow connectivity for HA purposes or similar. 
Also having routes the other way around can cause credit loops.

 

 Activation through OpenSM
• Use ‘-R ftree’ option to activate  the  fat-tree  algorithm

LMC > 0 is not supported by fat-tree routing. If this  is  specified, the default routing 
algorithm is invoked instead.

3.2.2.5.4 LASH Routing Algorithm
LASH is an acronym for LAyered SHortest Path Routing. It is a deterministic shortest path rout-
ing algorithm that  enables  topology  agnostic deadlock-free routing within communication net-
works.
When computing the routing function, LASH analyzes the network topology for the shortest-path 
routes between all pairs of  sources  /  destinations  and  groups  these paths into virtual layers in 
such a way as to avoid deadlock.

LASH analyzes routes and ensures deadlock freedom  between  switch pairs.  The link 
from HCA between and switch does not need virtual layers as deadlock will not arise 
between switch and HCA.

In more detail, the algorithm works as follows:
1. LASH determines the shortest-path between all pairs of source / destination  switches. Note, 

LASH  ensures  the  same SL is used for all SRC/DST - DST/SRC pairs and there is no guar-
antee that the return  path for a given DST/SRC will be the reverse of the route SRC/DST.

2. LASH then begins an SL assignment process where a route is assigned to a layer (SL) if the 
addition of that route does not  cause  deadlock within  that  layer.  This  is  achieved by main-
taining and analysing a channel dependency graph for each layer. Once the potential addition 
of a path could lead to deadlock, LASH opens a new layer and continues the process.

3. Once this stage has been completed, it is  highly  likely that the first  layers  processed  will 
contain more paths than the latter ones. To better balance the use of layers, LASH moves 
paths from one layer to another so that the number of paths in each layer averages out.
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Note that  the implementation of LASH in opensm attempts to use as few layers as possible. This 
number can be less than the number of actual layers available.
In  general  LASH  is  a  very flexible algorithm. It can, for example, reduce to Dimension Order 
Routing in certain topologies, it is topology agnostic and fares well in the face of faults.
It  has been shown that for both regular and irregular topologies, LASH outperforms Up/Down. 
The reason for this is that LASH  distributes  the traffic  more  evenly through a network, avoid-
ing the bottleneck issues related to a root node and always routes shortest-path.
The algorithm was developed by Simula Research Laboratory.
Use ‘-R lash -Q’ option to activate the LASH algorithm

QoS support has to be turned on in order that SL/VL mappings  are  used.

LMC  > 0 is not supported by the LASH routing. If this is specified, the default routing 
algorithm is invoked instead.

For open regular cartesian meshes the DOR algorithm is the ideal routing algorithm. For toroidal 
meshes on the other hand there are routing loops that can cause deadlocks. LASH can be used to 
route these cases. The performance of LASH can be improved by preconditioning the mesh in 
cases where there are multiple links connecting switches and also in cases where the switches are 
not cabled consistently. To invoke this, use '-R lash -Q --do_mesh_analysis'. This will add an 
additional phase that analyses the mesh to try to determine the dimension and size of a mesh. If it 
determines that the mesh looks like an open or closed cartesian mesh it reorders the ports in 
dimension order before the rest of the LASH algorithm runs.

3.2.2.5.5 DOR Routing Algorithm
The Dimension Order Routing algorithm is based on the Min Hop algorithm and  so  uses  short-
est paths.  Instead of spreading traffic out across different paths with the same shortest distance, it 
chooses  among  the available shortest paths based on an ordering of dimensions.  Each port must 
be consistently cabled to represent a  hypercube  dimension  or  a mesh  dimension.   Paths  are 
grown from a destination back to a source using the lowest dimension (port) of  available  paths 
at  each  step. This provides the ordering necessary to avoid deadlock.  When there are multiple 
links between any two switches, they still represent only  one dimension  and traffic is balanced 
across them unless port equalization is turned off.  In the case of hypercubes, the same port must 
be  used       throughout the fabric to represent the hypercube dimension and match on both ends 
of the cable.  In the case of meshes,  the  dimension  should consistently  use  the  same  pair of 
ports, one port on one end of the cable, and the other port on the other end, continuing along  the 
mesh dimension.
Use ‘-R dor’ option to activate the DOR algorithm.

3.2.2.5.6 Torus-2QoS Routing Algorithm
Torus-2QoS is a routing algorithm designed for large-scale 2D/3D torus fabrics. The torus-2QoS 
routing engine can provide the following functionality on a 2D/3D torus:
• Free of credit loops routing
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• Two levels of QoS, assuming switches support 8 data VLs
• Ability to route around a single failed switch, and/or multiple failed links, without:

• introducing credit loops
• changing path SL values

• Very short run times, with good scaling properties as fabric size increases

3.2.2.5.6.1 Unicast Routing Cache
Torus-2 QoS is a DOR-based algorithm that avoids deadlocks that would otherwise occur in a 
torus using the concept of a dateline for each torus dimension. It encodes into a path SL which 
datelines the path crosses as follows:

sl = 0;
for (d = 0; d < torus_dimensions; d++)
/* path_crosses_dateline(d) returns 0 or 1 */
sl |= path_crosses_dateline(d) << d;

For a 3D torus, that leaves one SL bit free, which torus-2 QoS uses to implement two QoS levels. 
Torus-2 QoS also makes use of the output port dependence of switch SL2VL maps to encode into 
one VL bit the information encoded in three SL bits. It computes in which torus coordinate direc-
tion each inter-switch link "points", and writes SL2VL maps for such ports as follows:

for (sl = 0; sl < 16; sl ++)
/* cdir(port) reports which torus coordinate direction a switch port
* "points" in, and returns 0, 1, or 2 */
sl2vl(iport,oport,sl) = 0x1 & (sl >> cdir(oport));

Thus, on a pristine 3D torus, i.e., in the absence of failed fabric switches, torus-2 QoS consumes 
8 SL values (SL bits 0-2) and 2 VL values (VL bit 0) per QoS level to provide deadlock-free 
routing on a 3D torus. Torus-2 QoS routes around link failure by "taking the long way around" 
any 1D ring interrupted by a link failure.  For example, consider the 2D 6x5 torus below, where 
switches are denoted by [+a-zA-Z]:

For a pristine fabric the path from S to D would be S-n-T-r-D.  In the event that either link S-n or 
n-T has failed, torus-2QoS would use the path S-m-p-o-T-r-D.  
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Note that it can do this without changing the path SL value; once the 1D ring m-S-n-T-o-p-m has 
been broken by failure, path segments using it cannot contribute to deadlock, and the x-direction 
dateline (between, say, x=5 and x=0) can be ignored for path segments on that ring. One result of 
this is that torus-2QoS can route around many simultaneous link failures, as long as no 1D ring is 
broken into disjoint segments.  For example, if links n-T and T-o have both failed, that ring has 
been broken into two disjoint segments, T and o-p-m-S-n.  Torus-2QoS checks for such issues, 
reports if they are found, and refuses to route such fabrics. 
Note that in the case where there are multiple parallel links between a pair of switches, torus-
2QoS will allocate routes across such links in a round-robin fashion, based on ports at the path 
destination switch that are active and not used for inter-switch links.  Should a link that is one of 
severalsuch parallel links fail, routes are redistributed across the remaining links.   When the last 
of such a set of parallel links fails, traffic is rerouted as described above.
Handling a failed switch under DOR requires introducing into a path at least one turn that would 
be otherwise "illegal", i.e. not allowed by DOR rules. Torus-2QoS will introduce such a turn as 
close as possible to the failed switch in order to route around it. n the above example, suppose 
switch T has failed, and consider the path from S to D. Torus-2QoS will produce the path S-n-I-r-
D, rather than the S-n-T-r-D path for a pristine torus, by introducing an early turn at n. Normal 
DOR rules will cause traffic arriving at switch I to be forwarded to switch r; for traffic arriving 
from I due to the "early" turn at n, this will generate an "illegal" turn at I.
Torus-2QoS will also use the input port dependence of SL2VL maps to set VL bit 1 (which 
would be otherwise unused) for y-x, z-x, and z-y turns, i.e., those turns that are illegal under 
DOR.  This causes the first hop after any such turn to use a separate set of VL values, and pre-
vents deadlock in the presence of a single failed switch. For any given path, only the hops after a 
turn that is illegal under DOR can contribute to a credit loop that leads to deadlock.  So in the 
example above with failed switch T, the location of the illegal turn at I in the path from S to D 
requires that any credit loop caused by that turn must encircle the failed switch at T.  Thus the 
second and later hops after the illegal turn at I (i.e., hop r-D) cannot contribute to a credit loop 
because they cannot be used to construct a loop encircling T.  The hop I-r uses a separate VL, so 
it cannot contribute to a credit loop encircling T. Extending this argument shows that in addition 
to being capable of routing around a single switch failure without introducing deadlock, torus-
2QoS can also route around multiple failed switches on the condition they are adjacent in the last 
dimension routed by DOR.  For example, consider the following case on a 6x6 2D torus:

Suppose switches T and R have failed, and consider the path from S to D. Torus-2QoS will gen-
erate the path S-n-q-I-u-D, with an illegal turn at switch I, and with hop I-u using a VL with bit 1 
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set. As a further example, consider a case that torus-2QoS cannot route without deadlock: two 
failed switches adjacent in a dimension that is not the last dimension routed by DOR; here the 
failed switches are O and T:

In a pristine fabric, torus-2QoS would generate the path from S to D as S-n-O-T-r-D.  With failed 
switches O and T, torus-2QoS will generate the path S-n-I-q-r-D, with illegal turn at switch I, and 
with hop I-q using a VL with bit 1 set.  In contrast to the earlier examples, the second hop after 
the illegal turn, q-r, can be used to construct a credit loop encircling the failed switches. 

3.2.2.5.6.2 Multicast Routing
Since torus-2QoS uses all four available SL bits, and the three data VL bits that are typically 
available in current switches, there is no way to use SL/VL values to separate multicast traffic 
from unicast traffic. Thus, torus-2QoS must generate multicast routing such that credit loops can-
not arise from a combination of multicast and unicast path segments. It turns out that it is possi-
ble to construct spanning trees for multicast routing that have that property.  For the 2D 6x5 torus 
example above, here is the full-fabric spanning tree that torus-2QoS will construct, where "x" is 
the root switch and each "+" is a non-root switch:

For multicast traffic routed from root to tip, every turn in the above spanning tree is a legal DOR 
turn. For traffic routed from tip to root, and some traffic routed through the root, turns are not 
legal DOR turns.  However, to construct a credit loop, the union of multicast routing on this span-
ning tree with DOR unicast routing can only provide 3 of the 4 turns needed for the loop. In addi-
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tion, if none of the above spanning tree branches crosses a dateline used for unicast credit loop 
avoidance on a torus, and if multicast traffic is confined to SL 0 or SL 8 (recall that torus-2QoS 
uses SL bit 3 to differentiate QoS level), then multicast traffic also cannot contribute to the "ring" 
credit loops that are otherwise possible in a torus. Torus-2QoS uses these ideas to create a master 
spanning tree.  Every multicast group spanning tree will be constructed as a subset of the master 
tree, with the same root as the master tree. Such multicast group spanning trees will in general 
not be optimal for groups which are a subset of the full fabric. However, this compromise must 
be made to enable support for two QoS levels on a torus while preventing credit loops. In the 
presence of link or switch failures that result in a fabric for which torus-2QoS can generate 
credit-loop-free unicast routes, it is also possible to generate a master spanning tree for multicast 
that retains the required properties.  For example, consider that same 2D 6x5 torus, with the link 
from (2,2) to (3,2) failed.  Torus-2QoS will generate the following master spanning tree:

Two things are notable about this master spanning tree.  First, assuming the x dateline was 
between x=5 and x=0, this spanning tree has a branch that crosses the dateline.  However, just as 
for unicast, crossing a dateline on a 1D ring (here, the ring for y=2) that is broken by a failure 
cannot contribute to a torus credit loop. Second, this spanning tree is no longer optimal even for 
multicast groups that encompass the entire fabric.  That, unfortunately, is a compromise that must 
be made to retain the other desirable properties of torus-2QoS routing. In the event that a single 
switch fails, torus-2QoS will generate a master spanning tree that has no "extra" turns by appro-
priately selecting a root switch.  In the 2D 6x5 torus example, assume now that the switch at 
(3,2), i.e. the root for a pristine fabric, fails.  Torus-2QoS will generate the following master 
spanning tree for that case:
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Assuming the y dateline was between y=4 and y=0, this spanning tree has a branch that crosses a 
dateline.  However, again this cannot contribute to credit loops as it occurs on a 1D ring (the ring 
for x=3) that is broken by a failure, as in the above example.

3.2.2.5.6.3 Torus Topology Discovery
The algorithm used by torus-2QoS to construct the torus topology from the undirected graph rep-
resenting the fabric requires that the radix of each dimension be configured via torus-2QoS.conf. 
It also requires that the torus topology be "seeded"; for a 3D torus this requires configuring four 
switches that define the three coordinate directions of the torus. Given this starting information, 
the algorithm is to examine the cube formed by the eight switch locations bounded by the corners 
(x,y,z) and (x+1,y+1,z+1).  Based on switches already placed into the torus topology at some of 
these locations, the algorithm examines 4-loops of interswitch links to find the one that is consis-
tent with a face of the cube of switch locations, and adds its swiches to the discovered topology 
in the correct locations.
Because the algorithm is based on examining the topology of 4-loops of links, a torus with one or 
more radix-4 dimensions requires extra initial seed configuration.  See torus-2QoS.conf(5) for 
details. Torus-2QoS will detect and report when it has insufficient configuration for a torus with 
radix-4 dimensions.
In the event the torus is significantly degraded, i.e., there are many missing switches or links, it 
may happen that torus-2QoS is unable to place into the torus some switches and/or links that 
were discovered in the fabric, and will generate a warning in that case.  A similar condition 
occurs if torus-2QoS is misconfigured, i.e., the radix of a torus dimension as configured does not 
match the radix of that torus dimension as wired, and many switches/links in the fabric will not 
be placed into the torus. 

3.2.2.5.6.4 Quality Of Service Configuration
OpenSM will not program switchs and channel adapters with SL2VL maps or VL arbitration 
configuration unless it is invoked with -Q.  Since torus-2QoS depends on such functionality for 
correct operation, always invoke OpenSM with -Q when torus-2QoS is in the list of routing 
engines. Any quality of service configuration method supported by OpenSM will work with 
torus-2QoS, subject to the following limitations and considerations. For all routing engines sup-
ported by OpenSM except torus-2QoS, there is a one-to-one correspondence between QoS level 
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and SL. Torus-2QoS can only support two quality of service levels, so only the high-order bit of 
any SL value used for unicast QoS configuration will be honored by torus-2QoS. For multicast 
QoS configuration, only SL values 0 and 8 should be used with torus-2QoS.
Since SL to VL map configuration must be under the complete control of torus-2QoS, any con-
figuration via qos_sl2vl, qos_swe_sl2vl, etc., must and will be ignored, and a warning will be 
generated. Torus-2QoS uses VL values 0-3 to implement one of its supported QoS levels, and VL 
values 4-7 to implement the other.  Hard-to-diagnose application issues may arise if traffic is not 
delivered fairly across each of these two VL ranges. Torus-2QoS will detect and warn if VL arbi-
tration is configured unfairly across VLs in the range 0-3, and also in the range 4-7. Note that the 
default OpenSM VL arbitration configuration does not meet this constraint, so all torus-2QoS 
users should configure VL arbitration via qos_vlarb_high, qos_vlarb_low, etc. 

 Operational Considerations
Any routing algorithm for a torus IB fabric must employ path SL values to avoid credit loops. As 
a result, all applications run over such fabrics must perform a path record query to obtain the cor-
rect path SL for connection setup. Applications that use rdma_cm for connection setup will auto-
matically meet this requirement. 
If a change in fabric topology causes changes in path SL values required to route without credit 
loops, in general all applications would need to repath to avoid message deadlock. Since torus-
2QoS has the ability to reroute after a single switch failure without changing path SL values, 
repathing by running applications is not required when the fabric is routed with torus-2QoS. 
Torus-2QoS can provide unchanging path SL values in the presence of subnet manager failover 
provided that all OpenSM instances have the same idea of dateline location. See torus-
2QoS.conf(5) for details. Torus-2QoS will detect configurations of failed switches and links that 
prevent routing that is free of credit loops, and will log warnings and refuse to route. If 
"no_fallback" was configured in the list of OpenSM routing engines, then no other routing 
engine will attempt to route the fabric. In that case all paths that do not transit the failed compo-
nents will continue to work, and the subset of paths that are still operational will continue to 
remain free of credit loops. OpenSM will continue to attempt to route the fabric after every 
sweep interval, and after any change (such as a link up) in the fabric topology. When the fabric 
components are repaired, full functionality will be restored.  In the event OpenSM was config-
ured to allow some other engine to route the fabric if torus-2QoS fails, then credit loops and mes-
sage deadlock are likely if torus-2QoS had previously routed the fabric successfully. Even if the 
other engine is capable of routing a torus without credit loops, applications that built connections 
with path SL values granted under torus-2QoS will likely experience message deadlock under 
routing generated by a different engine, unless they repath.  To verify that a torus fabric is routed 
free of credit loops, use ibdmchk to analyze data collected via ibdiagnet -vlr.

3.2.2.5.6.5 Torus-2QoS Configuration File Syntax
The file torus-2QoS.conf contains configuration information that is specific to the OpenSM rout-
ing engine torus-2QoS. Blank lines and lines where the first non-whitespace character is "#" are 
ignored. A token is any contiguous group of non-whitespace characters. Any tokens on a line fol-
lowing the recognized configuration tokens described below are ignored.

[torus|mesh] x_radix[m|M|t|T] y_radix[m|M|t|T] z_radix[m|M|t|T]

Either torus or mesh must be the first keyword in the configuration, and sets the topology that 
torus-2QoS will try to construct. A 2D topology can be configured by specifying one of x_radix, 
y_radix, or z_radix as 1. An individual dimension can be configured as mesh (open) or torus 
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(looped) by suffixing its radix specification with one of m, M, t, or T. Thus, "mesh 3T 4 5" and 
"torus 3 4M 5M" both specify the same topology. 
Note that although torus-2QoS can route mesh fabrics, its ability to route around failed compo-
nents is severely compromised on such fabrics. A failed fabric componentis very likely to cause a 
disjoint ring; see UNICAST ROUTING in torus-2QoS(8).

xp_link sw0_GUID sw1_GUID
yp_link sw0_GUID sw1_GUID
zp_link sw0_GUID sw1_GUID
xm_link sw0_GUID sw1_GUID
ym_link sw0_GUID sw1_GUID
zm_link sw0_GUID sw1_GUID

These keywords are used to seed the torus/mesh topology. For example, "xp_link 0x2000 
0x2001" specifies that a link from the switch with node GUID 0x2000 to the switch with node 
GUID 0x2001 would point in the positive x direction, while "xm_link 0x2000 0x2001" specifies 
that a link from the switch with node GUID 0x2000 to the switch with node GUID 0x2001 would 
point in the negative x direction. All the link keywords for a given seed must specify the same 
"from" switch.
In general, it is not necessary to configure both the positive and negative directions for a given 
coordinate; either is sufficient. However, the algorithm used for topology discovery needs extra 
information for torus dimensions of radix four (see TOPOLOGY DISCOVERY in torus-
2QoS(8)). For such cases both the positive and negative coordinate directions must be specified.
Based on the topology specified via the torus/mesh keyword, torus-2QoS will detect and log 
when it has insufficient seed configuration.

x_dateline position
y_dateline position
z_dateline position

In order for torus-2QoS to provide the guarantee that path SL values do not change under any 
conditions for which it can still route the fabric, its idea of dateline position must not change rel-
ative to physical switch locations. The dateline keywords provide the means to configure such 
behavior.
The dateline for a torus dimension is always between the switch with coordinate 0 and the switch 
with coordinate radix-1 for that dimension. By default, the common switch in a torus seed is 
taken as the origin of the coordinate system used to describe switch location. The position param-
eter for a dateline keyword moves the origin (and hence the dateline) the specified amount rela-
tive to the common switch in a torus seed.

next_seed

If any of the switches used to specify a seed were to fail torus-2QoS would be unable to complete 
topology discovery successfully. The next_seed keyword specifies that the following link and 
dateline keywords apply to a new seed specification.
For maximum resiliency, no seed specification should share a switch with any other seed specifi-
cation. Multiple seed specifications should use dateline configuration to ensure that torus-2QoS 
can grant path SL values that are constant, regardless of which seed was used to initiate topology 
discovery.
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portgroup_max_ports max_ports - This keyword specifies the maximum number of parallel 
inter-switch links, and also the maximum number of host ports per switch, that torus-2QoS can 
accommodate. The default value is 16. Torus-2QoS will log an error message during topology 
discovery if this parameter needs to be increased. If this keyword appears multiple times, the last 
instance prevails.
port_order p1 p2 p3 ... - This keyword specifies the order in which CA ports on a destination 
switch are visited when computing routes. When the fabric contains switches connected with 
multiple parallel links, routes are distributed in a round-robin fashion across such links, and so 
changing the order that CA ports are visited changes the distribution of routes across such links. 
This may be advantageous for some specific traffic patterns.
The default is to visit CA ports in increasing port order on destination switches. Duplicate values 
in the list will be ignored.
EXAMPLE

# Look for a 2D (since x radix is one) 4x5 torus.
torus 1 4 5
# y is radix-4 torus dimension, need both
# ym_link and yp_link configuration.
yp_link 0x200000 0x200005 # sw @ y=0,z=0 -> sw @ y=1,z=0
ym_link 0x200000 0x20000f # sw @ y=0,z=0 -> sw @ y=3,z=0
# z is not radix-4 torus dimension, only need one of
# zm_link or zp_link configuration.
zp_link 0x200000 0x200001 # sw @ y=0,z=0 -> sw @ y=0,z=1
next_seed
yp_link 0x20000b 0x200010 # sw @ y=2,z=1 -> sw @ y=3,z=1
ym_link 0x20000b 0x200006 # sw @ y=2,z=1 -> sw @ y=1,z=1
zp_link 0x20000b 0x20000c # sw @ y=2,z=1 -> sw @ y=2,z=2
y_dateline -2 # Move the dateline for this seed
z_dateline -1 # back to its original position.
# If OpenSM failover is configured, for maximum resiliency
# one instance should run on a host attached to a switch
# from the first seed, and another instance should run
# on a host attached to a switch from the second seed.
# Both instances should use this torus-2QoS.conf to ensure
# path SL values do not change in the event of SM failover.
# port_order defines the order on which the ports would be
# chosen for routing.
port_order 7 10 8 11 9 12 25 28 26 29 27 30

3.2.2.5.7 Routing Chains
The routing chains feature is offering a solution that enables one to configure different parts of 
the fabric and define a different routing engine to route each of them. The routings are done in a 
sequence (hence the name "chains") and any node in the fabric that is configured in more than 
one part is left with the routing updated by the last routing engine it was a part of.

 Configuring Routing Chains
The configuration for the routing chains feature consists of the following steps:
1. Define the port groups.
2. Define topologies based on previously defined port groups.
3. Define configuration files for each routing engine.
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4. Define routing engine chains over previously defined topologies and configuration files.

 Defining Port Groups
The basic idea behind the port groups is the ability to divide the fabric into sub-groups and give 
each group an identifier that can be used to relate to all nodes in this group. The port groups is a 
separate feature from the routing chains, but is a mandatory prerequisite for it. In addition, it is 
used to define the participants in each of the routing algorithms.

 Defining a Port Group Policy File
In order to define a port group policy file, set the parameter 'pgrp_policy_file' in the opensm con-
figuration file.

pgrp_policy_file /etc/opensm/conf/port_groups_policy_file

 Configuring a Port Group Policy
The port groups policy file details the port groups in the fabric. The policy file should be com-
posed of one or more paragraphs that define a group. Each paragraph should begin with the line 
'port-group' and end with the line 'end-port-group'.
For example:

port-group
…port group qualifiers…
end-port-group

 Port Group Qualifiers

 Rule Qualifier

There are several qualifiers used to describe a rule that determines which ports will be added to 
the group. Each port group policy must contain exactly one rule qualifier (If no rules exist, no 
ports can be chosen. More than one rule, on the other hand, will cause a conflict).

Unlike the port group's beginning and ending which do not require a colon, all qualifiers 
must end with a colon (':'). Also - a colon is a predefined mark that must not be used inside 
qualifier values. An inclusion of a colon in the name or the use of a port group, will result 
in the policy's failure.

Parameter Description Example

name Each group must have a name. Without a 
name qualifier, the policy fails.

name: grp1

use 'use' is an optional qualifier that one can 
define in order to describe the usage of 
this port group (if undefined, an empty 
string is used as a default).

use: first port group
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Parameter Description Example

guid list Comma separated list of guids to include 
in the group.
If no specific physical ports were config-
ured, all physical ports of the guid are 
chosen. However, for each guid, one can 
detail specific physical ports to be 
included in the group. This can be done 
using the following syntax:
• Specify a specific port in a guid to be chosen 

port-guid: 0x283@3
• Specify a specific list of ports in a guid to be 

chosen 
port-guid: 0x286@1/5/7

• Specify a specific range of ports in a guid to be 
chosen 
port-guid: 0x289@2-5

• Specify a list of specific ports and ports ranges 
in a guid to be chosen 
port-guid: 0x289@2-5/7/9-13/18

• Complex rule 
port-guid: 0x283@5-8/12/14, 0x286, 0x289/6/
8/12

port-guid: 0x283, 
0x286, 0x289

port guid range It is possible to configure a range of guids 
to be chosen to the group. However, while 
using the range qualifier, it is impossible 
to detail specific physical ports.
Note: A list of ranges cannot be speci-
fied. The below example is invalid and 
will cause the policy to fail:
port-guid-range: 0x283-0x289, 0x290-
0x295

port-guid-range: 
0x283-0x289
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port name One can configure a list of hostnames as a 
rule. Hosts with a node description that is 
built out of these hostnames will be cho-
sen. Since the node description contains 
the network card index as well, one might 
also specify a network card index and a 
physical port to be chosen. For example, 
the given configuration will cause only 
physical port 2 of a host with the node 
description ‘kuku HCA-1’ to be chosen.
port and hca_idx parameters are 
optional. If the port is unspecified, all 
physical ports are chosen. If hca_idx is 
unspecified, all card numbers are chosen. 
Specifying a hostname is mandatory.
One can configure a list of hostname/
port/hca_idx sets in the same quali-
fier as follows:
port-name: hostname=kuku; port=2; 
hca_idx=1 , hostname=host1; port=3, 
hostname=host2
Note: port-name qualifier is not rele-
vant for switches, but for HCA’s only.

port-name: host-
name=kuku; port=2; 
hca_idx=1

port regexp One can define a regular expression so 
that only nodes with a matching node 
description will be chosen to the group

port-regexp: SW*

It is possible to specify one physical port 
to be chosen for matching nodes (there is 
no option to define a list or a range of 
ports). The given example will cause only 
nodes that match physical port 3 to be 
added to the group.

port-regexp: SW*:3

union rule It is possible to define a rule that unites 
two different port groups. This means that 
all ports from both groups will be 
included in the united group.

union-rule: grp1, 
grp2

Parameter Description Example
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 Predefined Port Groups
There are 3 predefined, automatically created port groups that are available for use, yet 
cannot be defined in the policy file (if a group in the policy is configured with the name 
of one of these predefined groups, the policy fails) -
• ALL - a group that includes all nodes in the fabric
• ALL_SWITCHES - a group that includes all switches in the fabric.
• ALL_CAS - a group that includes all HCA's in the fabric.

subtract rule One can define a rule that subtracts one 
port group from another. The given rule, 
for example, will cause all the ports 
which are a part of grp1, but not included 
in grp2, to be chosen.
In subtraction (unlike union), the order 
does matter, since the purpose is to sub-
tract the second group from the first one.
There is no option to define more than 
two groups for union/subtraction. How-
ever, one can unite/subtract groups which 
are a union or a subtraction themselves, 
as shown in the port groups policy file 
example.

subtract-rule: grp1, 
grp2

Parameter Description Example
Mellanox Technologies 95



Features Overview and ConfigurationRev 2.3-1.0.1
 Port Groups Policy Examples

 Defining a Topologies Policy File
In order to define a port group policy file, set the parameter 'topo_policy_file' in the opensm con-
figuration file.

topo_policy_file /etc/opensm/conf/topo_policy_file.cfg

 Configuring a Topology Policy
The topologies policy file details a list of topologies. The policy file should be composed of one 
or more paragraphs which define a topology. Each paragraph should begin with the line 'topol-
ogy' and end with the line 'end-topology'.
For example:

topology
…topology qualifiers…
end-topology

 Topology Qualifiers

All topology qualifiers are mandatory. Absence of any of the below qualifiers will cause the pol-
icy parsing to fail.

port-group
name: grp3
use: Subtract of groups grp1 and grp2
subtract-rule:  grp1, grp2
end-port-group

port-group
name: grp1
port-guid: 0x281, 0x282, 0x283
end-port-group

port-group
name: grp2
port-guid-range: 0x282-0x286
end-port-group

port-group
name: grp4
port-name: hostname=kika port=1 hca_idx=1
end-port-group

port-group
name: grp3
union-rule: grp3, grp4
end-port-group

Unlike topology and end-topology which do not require a colon, all qualifiers must end 
with a colon (':'). Also - a colon is a predefined mark that must not be used inside qualifier 
values. An inclusion of a column in the qualifier values will result in the policy's failure.
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Table 4 - Topology Qualifiers

Parameter Description Example

id Topology ID.
Legal Values – any positive value.
Must be unique.

id: 1

sw-grp Name of the port group that includes all 
switches and switch ports to be used in 
this topology.

sw-grp: ys_switches

hca-grp Name of the port group that includes all 
HCA’s to be used in this topology.

hca-grp: ys_hosts

 Configuration File per Routing Engine
Each engine in the routing chain can be provided by its own configuration file. Routing engine 
configuration file is the fraction of parameters defined in the main opensm configuration file.
Some rules should be applied when defining a particular configuration file for a routing engine:
• Parameters that are not specified in specific routing engine configuration file are inher-

ited from the main opensm configuration file.
• The following configuration parameters are taking effect only in the main opensm con-

figuration file:
• qos and qos_* settings like (vl_arb, sl2vl, etc.)
• lmc
• routing_engine

 Defining a Routing Chain Policy File
In order to define a port group policy file, set the parameter 'rch_policy_file' in the opensm con-
figuration file.

rch_policy_file /etc/opensm/conf/chains_policy_file

 First Routing Engine in the Chain
The first unicast engine in a routing chain must include all switches and HCA's in the fabric 
(topology id must be 0). The path-bit parameter value is path-bit 0 and it cannot be changed.

 Configuring a Routing Chains Policy
The routing chains policy file details the routing engines (and their fallback engines) used for the 
fabric's routing. The policy file should be composed of one or more paragraphs which defines an 
engine (or a fallback engine). Each paragraph should begin with the line 'unicast-step' and end 
with the line 'end-unicast-step'.
For example

unicast-step
…routing engine qualifiers…
end-unicast-step

:
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 Routing Engine Qualifiers
Unlike unicast-step and end-unicast-step which do not require a colon, all qualifiers must 
end with a colon (':'). Also - a colon is a predefined mark that must not be used inside 
qualifier values. An inclusion of a colon in the qualifier values will result in the policy's 
failure.

Parameter Description Example

id ‘id’ is mandatory. Without an id qualifier 
for each engine, the policy fails.
• Legal values – size_t value (0 is illegal).
• The engines in the policy chain are set accord-

ing to an ascending id order, so it is highly cru-
cial to verify that the id that is given to the 
engines match the order in which you would 
like the engines to be set.

is: 1

engine This is a mandatory qualifier that 
describes the routing algorithm used 
within this unicast step.
Currently, on the first phase of routing 
chains, legal values are minhop/ftree/
updn.

engine: minhop

use This is an optional qualifier that enables 
one to describe the usage of this unicast 
step. If undefined, an empty string is used 
as a default.

use: ftree routing for 
for yellow stone 
nodes

config This is an optional qualifier that enables 
one to define a separate opensm config 
file for a specific unicast step. If unde-
fined, all parameters are taken from main 
opensm configuration file.

config: /etc/config/
opensm2.cfg

topology Define the topology that this engine uses.
• Legal value – id of an existing topology that is 

defined in topologies policy (or zero that repre-
sents the entire fabric and not a specific topol-
ogy).

• Default value – If unspecified, a routing engine 
will relate to the entire fabric (as if topology 
zero was defined).

• Notice: The first routing engine (the engine 
with the lowest id) MUST be configured with 
topology: 0 (entire fabric) or else, the routing 
chain parser will fail.

topology: 1
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Dump Files per Routing Engine
Each routing engine on the chain will dump its own data files if the appropriate log_flags 
is set (for instance 0x43).
The files that are dumped by each engine are:
• opensm-lid-matrix.dump
• opensm-lfts.dump
• opensm.fdbs
• opensm-subnet.lst
These files should contain the relevant data for each engine topology.

sl2vl and mcfdbs files are dumped only once for the entire fabric and NOT by every rout-
ing engine.

• Each engine concatenates its ID and routing algorithm name in its dump files names, as 
follows:
• opensm-lid-matrix.2.minhop.dump
• opensm.fdbs.3.ftree
• opensm-subnet.4.updn.lst

• In case that a fallback routing engine is used, both the routing engine that failed and the 
fallback engine that replaces it, dump their data.

fallback-to This is an optional qualifier that enables 
one to define the current unicast step as a 
fallback to another unicast step. This can 
be done by defining the id of the unicast 
step that this step is a fallback to.
• If undefined, the current unicast step is not a 

fallback.
• If the value of this qualifier is a non-existent 

engine id, this step will be ignored.
• A fallback step is meaningless if the step it is a 

fallback to did not fail.
• It is impossible to define a fallback to a fall-

back step (such definition will be ignored)

-

path-bit This is an optional qualifier that enables 
one to define a specific lid offset to be 
used by the current unicast step. Setting 
lmc > 0 in main opensm configuration file 
is a prerequisite for assigning specific 
path-bit for the routing engine.
Default value is 0 (if path-bit is not speci-
fied)

Path-bit: 1

Parameter Description Example
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If, for example, engine 2 runs ftree and it has a fallback engine with 3 as its id that runs minhop, one 
should expect to find 2 sets of dump files, one for each engine:
• opensm-lid-matrix.2.ftree.dump
• opensm-lid-matrix.3.minhop.dump
• opensm.fdbs.2.ftree
• opensm.fdbs.3.munhop

3.2.2.6 Quality of Service Management in OpenSM
When Quality of Service (QoS) in OpenSM is enabled (using the ‘-Q’ or ‘--qos’ flags), OpenSM 
looks for a QoS Policy file. During fabric initialization and at every heavy sweep, OpenSM 
parses the QoS policy file, applies its settings to the discovered fabric elements, and enforces the 
provided policy on client requests. The overall flow for such requests is as follows:
• The request is matched against the defined matching rules such that the QoS Level defi-

nition is found
• Given the QoS Level, a path(s) search is performed with the given restrictions imposed 

by that level

Figure 3: QoS Manager

There are two ways to define QoS policy:
• Advanced – the advanced policy file syntax provides the administrator various ways to 

match a PathRecord/MultiPathRecord (PR/MPR) request, and to enforce various QoS 
constraints on the requested PR/MPR

• Simple – the simple policy file syntax enables the administrator to match PR/MPR 
requests by various ULPs and applications running on top of these ULPs

Advanced QoS Policy File
The QoS policy file has the following sections:
I) Port Groups (denoted by port-groups)
This section defines zero or more port groups that can be referred later by matching rules (see 
below). Port group lists ports by:
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• Port GUID
• Port name, which is a combination of NodeDescription and IB port number
• PKey, which means that all the ports in the subnet that belong to partition with a given 

PKey belong to this port group
• Partition name, which means that all the ports in the subnet that belong to partition with 

a given name belong to this port group
• Node type, where possible node types are: CA, SWITCH, ROUTER, ALL, and SELF 

(SM's port).
II) QoS Setup (denoted by qos-setup)
This section describes how to set up SL2VL and VL Arbitration tables on various nodes in the 
fabric. However, this is not supported in OFED. SL2VL and VLArb tables should be configured 
in the OpenSM options file (default location - /var/cache/opensm/opensm.opts).

III) QoS Levels (denoted by qos-levels)
Each QoS Level defines Service Level (SL) and a few optional fields:
• MTU limit
• Rate limit
• PKey
• Packet lifetime
When path(s) search is performed, it is done with regards to restriction that these QoS Level 
parameters impose. One QoS level that is mandatory to define is a DEFAULT QoS level. It is 
applied to a PR/MPR query that does not match any existing match rule. Similar to any other 
QoS Level, it can also be explicitly referred by any match rule.

IV) QoS Matching Rules (denoted by qos-match-rules)
Each PathRecord/MultiPathRecord query that OpenSM receives is matched against the set of 
matching rules. Rules are scanned in order of appearance in the QoS policy file such as the first 
match takes precedence.
Each rule has a name of QoS level that will be applied to the matching query. A default QoS level 
is applied to a query that did not match any rule.
Queries can be matched by:
• Source port group (whether a source port is a member of a specified group)
• Destination port group (same as above, only for destination port)
• PKey
• QoS class
• Service ID
To match a certain matching rule, PR/MPR query has to match ALL the rule's criteria. However, 
not all the fields of the PR/MPR query have to appear in the matching rule.
For instance, if the rule has a single criterion - Service ID, it will match any query that has this 
Service ID, disregarding rest of the query fields. However, if a certain query has only Service ID 
(which means that this is the only bit in the PR/MPR component mask that is on), it will not 
match any rule that has other matching criteria besides Service ID.
Mellanox Technologies 101



Features Overview and ConfigurationRev 2.3-1.0.1
Simple QoS Policy Definition
Simple QoS policy definition comprises of a single section denoted by qos-ulps. Similar to the 
advanced QoS policy, it has a list of match rules and their QoS Level, but in this case a match 
rule has only one criterion - its goal is to match a certain ULP (or a certain application on top of 
this ULP) PR/MPR request, and QoS Level has only one constraint - Service Level (SL).
The simple policy section may appear in the policy file in combine with the advanced policy, or 
as a stand-alone policy definition. See more details and list of match rule criteria below.

Policy File Syntax Guidelines
• Leading and trailing blanks, as well as empty lines, are ignored, so  the indentation in the 

example is just for better readability.
• Comments are started with the pound sign (#) and terminated by EOL.
• Any keyword should be the first non-blank in the line, unless it's a comment.
• Keywords that denote section/subsection start have matching closing keywords.
• Having a QoS Level named "DEFAULT" is a must - it is applied to PR/MPR requests 

that didn't match any of the matching rules.
• Any section/subsection of the policy file is optional.

Examples of Advanced Policy File
As mentioned earlier, any section of the policy file is optional, and the only mandatory part of the 
policy file is a default QoS Level.
Here's an example of the shortest policy file:

    qos-levels
        qos-level
            name: DEFAULT
            sl: 0
        end-qos-level
    end-qos-levels

Port groups section is missing because there are no match rules, which means that port groups are 
not referred anywhere, and there is no need defining them. And since this policy file doesn't have 
any matching rules, PR/MPR query will not match any rule, and OpenSM will enforce default 
QoS level. Essentially, the above example is equivalent to not having a QoS policy file at all.
The following example shows all the possible options and keywords in the policy file and their 
syntax:

    #
    # See the comments in the following example.
    # They explain different keywords and their meaning.
    #
    port-groups

        port-group # using port GUIDs
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            name: Storage
            # "use" is just a description that is used for logging
            #  Other than that, it is just a comment
            use: SRP Targets
            port-guid: 0x10000000000001, 0x10000000000005-0x1000000000FFFA
            port-guid: 0x1000000000FFFF
        end-port-group

        port-group
            name: Virtual Servers
            # The syntax of the port name is as follows:
            #   "node_description/Pnum".
            # node_description is compared to the NodeDescription of the node,
            # and "Pnum" is a port number on that node.
            port-name: vs1 HCA-1/P1, vs2 HCA-1/P1
        end-port-group

        # using partitions defined in the partition policy
        port-group
            name: Partitions
            partition: Part1
            pkey: 0x1234
        end-port-group

        # using node types: CA, ROUTER, SWITCH, SELF (for node that runs SM)
        # or ALL (for all the nodes in the subnet)
        port-group
            name: CAs and SM
            node-type: CA, SELF
        end-port-group

    end-port-groups

    qos-setup
        # This section of the policy file describes how to set up SL2VL and VL
        # Arbitration tables on various nodes in the fabric.
        # However, this is not supported in OFED - the section is parsed
        # and ignored. SL2VL and VLArb tables should be configured in the
        # OpenSM options file (by default - /var/cache/opensm/opensm.opts).
    end-qos-setup

    qos-levels

        # Having a QoS Level named "DEFAULT" is a must - it is applied to
        # PR/MPR requests that didn't match any of the matching rules.
        qos-level
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            name: DEFAULT
            use: default QoS Level
            sl: 0
        end-qos-level

        # the whole set: SL, MTU-Limit, Rate-Limit, PKey, Packet Lifetime
        qos-level
            name: WholeSet
            sl: 1
            mtu-limit: 4
            rate-limit: 5
            pkey: 0x1234
            packet-life: 8
        end-qos-level

    end-qos-levels

    # Match rules are scanned in order of their apperance in the policy file.
    # First matched rule takes precedence.
    qos-match-rules

        # matching by single criteria: QoS class
        qos-match-rule
            use: by QoS class
            qos-class: 7-9,11
            # Name of qos-level to apply to the matching PR/MPR
            qos-level-name: WholeSet
        end-qos-match-rule

        # show matching by destination group and service id
        qos-match-rule
            use: Storage targets
            destination: Storage
            service-id: 0x10000000000001, 0x10000000000008-0x10000000000FFF
            qos-level-name: WholeSet
        end-qos-match-rule

        qos-match-rule
            source: Storage
            use: match by source group only
            qos-level-name: DEFAULT
        end-qos-match-rule

        qos-match-rule
            use: match by all parameters
            qos-class: 7-9,11
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            source: Virtual Servers
            destination: Storage
            service-id: 0x0000000000010000-0x000000000001FFFF
            pkey: 0x0F00-0x0FFF
            qos-level-name: WholeSet
        end-qos-match-rule

    end-qos-match-rules

Simple QoS Policy - Details and Examples
Simple QoS policy match rules are tailored for matching ULPs (or some application on top of a 
ULP) PR/MPR requests. This section has a list of per-ULP (or per-application) match rules and 
the SL that should be enforced on the matched PR/MPR query.
Match rules include:
• Default match rule that is applied to PR/MPR query that didn't match any of the other 

match rules
• SDP
• SDP application with a specific target TCP/IP port range
• SRP with a specific target IB port GUID
• RDS
• IPoIB with a default PKey
• IPoIB with a specific PKey
• Any ULP/application with a specific Service ID in the PR/MPR query
• Any ULP/application with a specific PKey in the PR/MPR query
• Any ULP/application with a specific target IB port GUID in the PR/MPR query
Since any section of the policy file is optional, as long as basic rules of the file are kept (such as 
no referring to nonexisting port group, having default QoS Level, etc), the simple policy section 
(qos-ulps) can serve as a complete QoS policy file.
The shortest policy file in this case would be as follows:

qos-ulps
    default  : 0 #default SL
end-qos-ulps

It is equivalent to the previous example of the shortest policy file, and it is also equivalent to not 
having policy file at all. Below is an example of simple QoS policy with all the possible key-
words:

qos-ulps
default               :0 # default SL
sdp, port-num 30000   :0 # SL for application running on
                                  # top of SDP when a destination
                                  # TCP/IPport is 30000
sdp, port-num 10000-20000     : 0
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sdp                   :1 # default SL for any other
                                  # application running on top of SDP
rds                   :2 # SL for RDS traffic
ipoib, pkey 0x0001    :0 # SL for IPoIB on partition with
                                  # pkey 0x0001
ipoib                 :4 # default IPoIB partition,
                                  # pkey=0x7FFF
any, service-id 0x6234:6 # match any PR/MPR query with a
                                  # specific Service ID
any, pkey 0x0ABC      :6 # match any PR/MPR query with a
                                  # specific PKey
srp, target-port-guid 0x1234  : 5 # SRP when SRP Target is located
                                  # on a specified IB port GUID
any, target-port-guid 0x0ABC-0xFFFFF : 6 # match any PR/MPR query
                                  # with a specific target port GUID
end-qos-ulps

Similar to the advanced policy definition, matching of PR/MPR queries is done in order of 
appearance in the QoS policy file such as the first match takes precedence, except for the 
"default" rule, which is applied only if the query didn't match any other rule. All other sections of 
the QoS policy file take precedence over the qos-ulps section. That is, if a policy file has both 
qos-match-rules and qos-ulps sections, then any query is matched first against the rules in the 
qos-match-rules section, and only if there was no match, the query is matched against the rules in 
qos-ulps section.
Note that some of these match rules may overlap, so in order to use the simple QoS definition 
effectively, it is important to understand how each of the ULPs is matched.

3.2.2.6.1 IPoIB
IPoIB query is matched by PKey or by destination GID, in which case this is the GID of the mul-
ticast group that OpenSM creates for each IPoIB partition.
Default PKey for IPoIB partition is 0x7fff, so the following three match rules are equivalent:

    ipoib      :<SL>
    ipoib, pkey 0x7fff : <SL>
    any,   pkey 0x7fff : <SL>

3.2.2.6.2 SDP
SDP PR query is matched by Service ID. The Service-ID for SDP is 0x000000000001PPPP, 
where PPPP are 4 hex digits holding the remote TCP/IP Port Number to connect to. The follow-
ing two match rules are equivalent:

    sdp                                           :<SL>
    any, service-id 0x0000000000010000-0x000000000001ffff : <SL>

3.2.2.6.3  RDS
Similar to SDP, RDS PR query is matched by Service ID. The Service ID for RDS is 
0x000000000106PPPP, where PPPP are 4 hex digits holding the remote TCP/IP Port Number to 
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connect to. Default port number for RDS is 0x48CA, which makes a default Service-ID 
0x00000000010648CA. The following two match rules are equivalent:

rds                        :<SL>
any, service-id 0x00000000010648CA : <SL>

3.2.2.6.4 SRP
Service ID for SRP varies from storage vendor to vendor, thus SRP query is matched by the tar-
get IB port GUID. The following two match rules are equivalent:

srp, target-port-guid 0x1234  : <SL>
any, target-port-guid 0x1234  : <SL>

Note that any of the above ULPs might contain target port GUID in the PR query, so in order for 
these queries not to be recognized by the QoS manager as SRP, the SRP match rule (or any match 
rule that refers to the target port guid only) should be placed at the end of the qos-ulps match 
rules.

3.2.2.6.5 MPI
SL for MPI is manually configured by MPI admin. OpenSM is not forcing any SL on the MPI 
traffic, and that's why it is the only ULP that did not appear in the qos-ulps section.

SL2VL Mapping and VL Arbitration
OpenSM cached options file has a set of QoS related configuration parameters, that are used to 
configure SL2VL mapping and VL arbitration on IB ports. These parameters are:
• Max VLs: the maximum number of VLs that will be on the subnet
• High limit: the limit of High Priority component of VL Arbitration table (IBA 7.6.9)
• VLArb low table: Low priority VL Arbitration table (IBA 7.6.9) template
• VLArb high table: High priority VL Arbitration table (IBA 7.6.9) template
• SL2VL: SL2VL Mapping table (IBA 7.6.6) template. It is a list of VLs corresponding to 

SLs 0-15 (Note that VL15 used here means drop this SL).
There are separate QoS configuration parameters sets for various target types: CAs, routers, 
switch external ports, and switch's enhanced port 0. The names of such parameters are prefixed 
by "qos_<type>_" string. Here is a full list of the currently supported sets:
• qos_ca_  - QoS configuration parameters set for CAs.
• qos_rtr_ - parameters set for routers.
• qos_sw0_ - parameters set for switches' port 0.
• qos_swe_ - parameters set for switches' external ports.
Here's the example of typical default values for CAs and switches' external ports (hard-coded in 
OpenSM initialization):

qos_ca_max_vls 15
qos_ca_high_limit 0
qos_ca_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0
qos_ca_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4
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qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15
qos_swe_high_limit 0
qos_swe_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0
qos_swe_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

VL arbitration tables (both high and low) are lists of VL/Weight pairs. Each list entry contains a 
VL number (values from 0-14), and a weighting value (values 0-255), indicating the number of 
64 byte units (credits) which may be transmitted from that VL when its turn in the arbitration 
occurs. A weight of 0 indicates that this entry should be skipped. If a list entry is programmed for 
VL15 or for a VL that is not supported or is not currently configured by the port, the port may 
either skip that entry or send from any supported VL for that entry.
Note, that the same VLs may be listed multiple times in the High or Low priority arbitration 
tables, and, further, it can be listed in both tables. The limit of high-priority VLArb table 
(qos_<type>_high_limit) indicates the number of high-priority packets that can be transmitted 
without an opportunity to send a low-priority packet. Specifically, the number of bytes that can 
be sent is high_limit times 4K bytes.
A high_limit value of 255 indicates that the byte limit is unbounded.

If the 255 value is used, the low priority VLs may be starved.

A value of 0 indicates that only a single packet from the high-priority table may be sent before an 
opportunity is given to the low-priority table.
Keep in mind that ports usually transmit packets of size equal to MTU. For instance, for 4KB 
MTU a single packet will require 64 credits, so in order to achieve effective VL arbitration for 
packets of 4KB MTU, the weighting values for each VL should be multiples of 64.
Below is an example of SL2VL and VL Arbitration configuration on subnet:

qos_ca_max_vls 15
qos_ca_high_limit 6
qos_ca_vlarb_high 0:4
qos_ca_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15
qos_swe_high_limit 6
qos_swe_vlarb_high 0:4
qos_swe_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

In this example, there are 8 VLs configured on subnet: VL0 to VL7. VL0 is defined as a high pri-
ority VL, and it is limited to 6 x 4KB = 24KB in a single transmission burst. Such configuration 
would suilt VL that needs low latency and uses small MTU when transmitting packets. Rest of 
VLs are defined as low priority VLs with different weights, while VL4 is effectively turned off.
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Deployment Example
Figure 4 shows an example of an InfiniBand subnet that has been configured by a QoS manager 
to provide different service levels for various ULPs.

Figure 4: Example QoS Deployment on InfiniBand Subnet

3.2.2.7 QoS Configuration Examples
The following are examples of QoS configuration for different cluster deployments. Each exam-
ple provides the QoS level assignment and their administration via OpenSM configuration files.

Typical HPC Example: MPI and Lustre

Assignment of QoS Levels
• MPI 

• Separate from I/O load
• Min BW of 70%

• Storage Control (Lustre MDS)
• Low latency

• Storage Data (Lustre OST)
• Min BW 30%

Administration
• MPI is assigned an SL via the command line

host1# mpirun –sl 0

• OpenSM QoS policy file
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In the following policy file example, replace OST* and MDS* with the real port 
GUIDs.

qos-ulps
    default :0 # default SL (for 
MPI)
    any, target-port-guid OST1,OST2,OST3,OST4:1 # SL for Lustre OST
    any, target-port-guid MDS1,MDS2 :2 # SL for Lustre 
MDS
end-qos-ulps

• OpenSM options file

 qos_max_vls 8
 qos_high_limit 0
 qos_vlarb_high 2:1
 qos_vlarb_low 0:96,1:224
 qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

EDC SOA (2-tier): IPoIB and SRP
The following is an example of QoS configuration for a typical enterprise data center (EDC) with 
service oriented architecture (SOA), with IPoIB carrying all application traffic and SRP used for 
storage.

QoS Levels 
• Application traffic 

• IPoIB (UD and CM) and SDP
• Isolated from storage 
• Min BW of 50%

• SRP
• Min BW 50%
• Bottleneck at storage nodes

Administration
• OpenSM QoS policy file

In the following policy file example, replace SRPT* with the real SRP Target port 
GUIDs.

qos-ulps
    default                                 :0
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    ipoib                                   :1
    sdp                                     :1
    srp, target-port-guid SRPT1,SRPT2,SRPT3 :2
end-qos-ulps

• OpenSM options file

qos_max_vls 8
 qos_high_limit 0
 qos_vlarb_high 1:32,2:32
 qos_vlarb_low 0:1,
 qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

EDC (3-tier): IPoIB, RDS, SRP
The following is an example of QoS configuration for an enterprise data center (EDC), with 
IPoIB carrying all application traffic, RDS for database traffic, and SRP used for  storage.

QoS Levels 
• Management traffic (ssh) 

• IPoIB management VLAN (partition A)
• Min BW 10%

• Application traffic
• IPoIB application VLAN (partition B)
• Isolated from storage and database
• Min BW of 30%

• Database Cluster traffic
• RDS
• Min BW of 30%

• SRP
• Min BW 30%
• Bottleneck at storage nodes

Administration
• OpenSM QoS policy file

In the following policy file example, replace SRPT* with the real SRP Initiator port 
GUIDs.

qos-ulps
    default                            :0
    ipoib, pkey 0x8001                 :1
    ipoib, pkey 0x8002                 :2
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    rds                                :3
    srp, target-port-guid SRPT1, SRPT2, SRPT3  : 4
end-qos-ulps

• OpenSM options file

 qos_max_vls 8
 qos_high_limit 0
 qos_vlarb_high 1:32,2:96,3:96,4:96
 qos_vlarb_low 0:1
 qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

• Partition configuration file

Default=0x7fff,     ipoib : ALL=full;
PartA=0x8001, sl=1, ipoib : ALL=full;

Adaptive Routing

Adaptive Routing is at beta stage.

Adaptive Routing (AR) enables the switch to select the output port based on the port's load. AR 
supports two routing modes:
• Free AR: No constraints on output port selection.
• Bounded AR: The switch does not change the output port during the same transmission 

burst. This mode minimizes the appearance of out-of-order packets.
Adaptive Routing Manager enables and configures Adaptive Routing mechanism on fabric 
switches. It scans all the fabric switches, deduces which switches support Adaptive Routing and 
configures the AR functionality on these switches.
Currently, Adaptive Routing Manager supports only link aggregation algorithm. Adaptive Rout-
ing Manager configures AR mechanism to allow switches to select output port out of all the ports 
that are linked to the same remote switch. This algorithm suits any topology with several links 
between switches. Especially, it suits 3D torus/mesh, where there are  several link in each direc-
tion of the X/Y/Z axis.

If some switches do not support AR, they will slow down the AR Manager as it may get 
timeouts on the AR-related queries to these switches.

Installing the Adaptive Routing
Adaptive Routing Manager is a Subnet Manager plug-in, i.e. it is a shared library (libarmgr.so) 
that is dynamically loaded by the Subnet Manager. Adaptive Routing Manager is installed as a 
part of Mellanox OFED installation.
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 Running Subnet Manager with Adaptive Routing Manager
 Adaptive Routing (AR) Manager can be enabled/disabled through SM options file.

3.2.2.7.1  Enabling Adaptive Routing
 To enable Adaptive Routing, perform the following:
1. Create the Subnet Manager options file. Run: 

opensm -c <options-file-name>

2. Add 'armgr' to the 'event_plugin_name' option in the file:

# Event plugin name(s)
event_plugin_name armgr

3. Run Subnet Manager with the new options file:

opensm -F <options-file-name>

Adaptive Routig Manager can read options file with various configuration parameters to fine-
tune AR mechanism and AR Manager behavior. Default location of the AR Manager options file 
is /etc/opensm/ar_mgr.conf. 
To provide an alternative location, please perform the following:
1. Add 'armgr --conf_file <ar-mgr-options-file-name>' to the 'event_plugin_options' 

option in the file  # Options string that would be passed to the plugin(s) 
event_plugin_options armgr --conf_file <ar-mgr-options-file-name>

2. Run Subnet Manager with the new options file:

opensm -F <options-file-name>

See an example of AR Manager options file with all the default values in “Example of Adaptive 
Routing Manager Options File” on page 116.

3.2.2.7.2 Disabling Adaptive Routing
 There are two ways to disable Adaptive Routing Manager:
1. By disabling it explicitly in the Adaptive Routing configuration file.
2.  By removing the 'armgr' option from the Subnet Manager options file.
 

Adaptive Routing mechanism is automatically disabled once the switch 
receives setting of the usual linear routing table (LFT).

Therefore, no action is required to clear Adaptive Routing configuration on the switches if you 
do not wish to use Adaptive Routing.

 Querying Adaptive Routing Tables
 When Adaptive Routing is active, the content of the usual Linear Forwarding Routing Table on 
the switch is invalid, thus the standard tools that query LFT (e.g. smpquery, dump_lfts.sh, and 
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others) cannot be used. To query the switch for the content of its Adaptive Routing table, use the 
'smparquery' tool that is installed as a part of the Adaptive Routing Manager package. To see its 
usage details, run 'smparquery -h'.

Adaptive Routing Manager Options File
 The default location of the AR Manager options file is /etc/opensm/ar_mgr.conf. To set an alter-
native location, please perform the following:
1. Add 'armgr --conf_file <ar-mgr-options-file-name> to the event_plugin_option' option 

in the file # Options string that would be passed to the plugin(s) event_plugin_options 
armgr --conf_file <ar-mgr-options-file-name>

2. Run Subnet Manager with the new options file:

opensm -F <options-file-name>' 

AR Manager options file contains two types of parameters:
1. General options - Options which describe the AR Manager behavior and the AR parameters 

that will be applied to all the switches in the fabric.
2. Per-switch options - Options which describe specific switch behavior. 
Note the following:
• Adaptive Routing configuration file is case sensitive.
• You can specify options for nonexisting switch GUID. These options will be ignored 

until a switch with a matching GUID will be added to the fabric.
• Adaptive Routing configuration file is parsed every AR Manager cycle, which in turn is 

executed at every heavy sweep of the Subnet Manager.
• If the AR Manager fails to parse the options file, default settings for all the options will 

be used.
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3.2.2.7.3 General AR Manager Options
Option File Description Values

ENABLE: 
<true|false>

Enable/disable Adaptive Routing on fabric 
switches.
Note that if a switch was identified by AR Man-
ager as device that does not support AR, AR 
Manager will not try to enable AR on this 
switch. If the firmware of this switch was 
updated to support the AR, the AR Manager will 
need to be restarted (by restarting Subnet Man-
ager) to allow it to configure the AR on this 
switch.
This option can be changed on-the-fly.

Default: true

AR_ALGORITHM: 
<LAG|TREE>

 Adaptive Routing algorithm:
• LAG: Ports groups are created out of "parallel" 

links. Links that are connecting the same pair of 
switches.

• TREE: All the ports with minimal hops to destina-
tion are in the same group. Must run together with 
UPDN routing engine.

AR_MODE: 
<bounded|free>

Adaptive Routing Mode:
• free: no constraints on output port selection
• bounded: the switch does not change the output 

port during the same transmission burst. This mode 
minimizes the appearance of out-of-order packets

This option can be changed on-the-fly.

Default: bounded

AGEING_TIME: 
<usec>

Applicable to bounded AR mode only. Specifies 
how much time there should be no traffic in 
order for the switch to declare a transmission 
burst as finished and allow changing the output 
port for the next transmission burst (32-bit 
value).
This option can be changed on-the-fly.

Default: 30

MAX_ERRORS: 
<N>
ERROR_WINDOW
: <N>

When number of errors exceeds 
'MAX_ERRORS' of send/receive errors or time-
outs in less than 'ERROR_WINDOW' seconds, 
the AR Manager will abort, returning control 
back to the Subnet Manager.
This option can be changed on-the-fly.

Values for both 
options: [0-0xffff]
• MAX_ERRORS = 0: 

zero tollerance - abort 
configuration on first 
error. Default:10

• ERROR_WINDOW = 
0: mechanism disabled 
- no error checking. 
Default: 5 

LOG_FILE: <full 
path>

AR Manager log file.
This option can be changed on-the-fly.

Default: /var/log/
armgr.log
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A user can provide per-switch configuration options with the following syntax:

SWITCH <GUID> {
<switch option 1>;
<switch option 2>;
...
}

The following are the per-switch options:

Option File Description Values

ENABLE: 
<true|false>

Allows you to enable/disable the AR on this 
switch. If the general ENABLE option value is 
set to 'false', then this per-switch option is 
ignored.
This option can be changed on the fly.

Default: true

AGEING_TIME: 
<usec>

Applicable to bounded AR mode only. Specifies 
how much time there should be no traffic in 
order for the switch to declare a transmission 
burst as finished and allow changing the output 
port for the next transmission burst (32-bit 
value).
In the pre-switch options file this option refers to 
the particular switch only
This option can be changed on-the-fly.

Default: 30

Example of Adaptive Routing Manager Options File

ENABLE: true;
 LOG_FILE: /tmp/ar_mgr.log;
 LOG_SIZE: 100;
 MAX_ERRORS: 10;
 ERROR_WINDOW: 5;

SWITCH 0x12345 {
ENABLE: true;
AGEING_TIME: 77;
 }

SWITCH 0x0002c902004050f8 {

LOG_SIZE: <size 
in MB>

This option defines maximal AR Manager log 
file size in MB. The logfile will be truncated and 
restarted upon reaching this limit.
This option cannot be changed on-the-fly.

0: unlimited log file 
size.
Default: 5

Option File Description Values
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AGEING_TIME: 44;
 }

SWITCH 0xabcde {
ENABLE: false;
 }

3.2.2.8 Congestion Control
Congestion Control Manager is a Subnet Manager (SM) plug-in, i.e. it is a shared library (libcc-
mgr.so) that is dynamically loaded by the Subnet Manager. Congestion Control Manager is 
installed as part of Mellanox OFED installation. 
The Congestion Control mechanism controls traffic entry into a network and attempts to avoid 
oversubscription of any of the processing or link capabilities of the intermediate nodes and net-
works. Additionally, is takes resource reducing steps by reducing the rate of sending packets. 
Congestion Control Manager enables and configures Congestion Control mechanism on fabric 
nodes (HCAs and switches).

Running OpenSM with Congestion Control Manager
Congestion Control (CC) Manager can be enabled/disabled through SM options file. To do so, 
perform the following:
1. Create the file. Run: 

opensm -c <options-file-name>'

2. Find the 'event_plugin_name' option in the file, and add 'ccmgr' to it.

# Event plugin name(s)
event_plugin_name ccmgr

3. Run the SM with the new options file: 'opensm -F <options-file-name>'

Once the Congestion Control is enabled on the fabric nodes, to completely disable 
Congestion Control, you will need to actively turn it off. Running the  SM w/o the CC 
Manager is not sufficient, as the hardware still continues to function in accordance to 
the previous CC configuration. 

For further information on how to turn OFF CC, please refer to Section , “Configuring Conges-
tion Control Manager”, on page 117

Configuring Congestion Control Manager
Congestion Control (CC) Manager comes with a predefined set of setting. However, you can 
fine-tune the CC mechanism and CC Manager behavior by modifying some of the options. To do 
so, perform the following:
1. Find the 'event_plugin_options' option in the SM options file, and add the following: 

conf_file <cc-mgr-options-file-name>':
# Options string that would be passed to the plugin(s)
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event_plugin_options ccmgr --conf_file <cc-mgr-options-file-name>

2. Run the SM with the new options file: 'opensm -F <options-file-name>'

To turn CC OFF, set 'enable' to 'FALSE' in the Congestion Control Manager configura-
tion file, and run OpenSM ones with this configuration.

For the full list of CC Manager options with all the default values, See “Configuring Congestion 
Control Manager” on page 117.
For further details on the list of CC Manager options, please refer to the IB spec.

Configuring Congestion Control Manager Main Settings
To fine-tune CC mechanism and CC Manager behavior, and set the CC manager main settings, 
perform the following: 
• To enables/disables Congestion Control mechanism on the fabric nodes, set the follow-

ing parameter:

enable

• The values are: <TRUE | FALSE>. 
• The default is: True

• CC manager configures CC mechanism behavior based on the fabric size. The larger the 
fabric is, the more aggressive CC mechanism is in its response to congestion. To manu-
ally modify CC manager behavior by providing it with an arbitrary fabric size, set the 
following parameter:

num_hosts

• The values are: [0-48K]. 
• The default is: 0 (base on the CCT calculation on the current subnet size) 

• The smaller the number value of the parameter, the faster HCAs will respond to the con-
gestion and will throttle the traffic. Note that if the number is too low, it will result in 
suboptimal bandwidth. To change the mean number of packets between marking eligible 
packets with a FECN, set the following parameter:

marking_rate

• The values are: [0-0xffff]. 
• The default is: 0xa

• You can set the minimal packet size that can be marked with FECN. Any packet less 
than this size [bytes] will not be marked with FECN. To do so, set the following parame-
ter:

packet_size

• The values are: [0-0x3fc0]. 
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• The default is: 0x200
• When number of errors exceeds 'max_errors' of send/receive errors or timeouts in less 

than 'error_window' seconds, the CC MGR will abort and will allow OpenSM to pro-
ceed. To do so, set the following parameter:

max_errors
error_window

• The values are: 
max_errors = 0: zero tollerance - abort configuration on first error

error_window = 0: mechanism disabled - no error checking.[0-48K]

• The default is: 5 

3.2.2.8.1 Congestion Control Manager Options File 

Option File Description Values

enable Enables/disables Congestion Control mechanism 
on the fabric nodes.

Values: <TRUE | FALSE>
Default: True

num_hosts Indicates the number of nodes. The CC table val-
ues are calculated based on this number.

Values: [0-48K]
Default: 0 (base on the CCT 
calculation on the current 
subnet size) 

Option File Description Values

threshold Indicates how aggressive the congestion mark-
ing should be.

[0-0xf] 
• 0 - no packet marking, 
• 0xf - very aggressive
Default:  0xf

marking_rate The mean number of packets between marking 
eligible packets with a FECN

Values: [0-0xffff]
Default: 0xa

packet_size Any packet less than this size [bytes] will not be 
marked with FECN.

Values: [0-0x3fc0]  
Default: 0x200

Option File Desctiption Values

 port_control Specifies the Congestion Control attribute for 
this port

Values: 
• 0 - QP based congestion 

control,
• 1 - SL/Port based conges-

tion control
Default: 0

ca_control_ma
p 

An array of sixteen bits, one for each SL. Each 
bit indicates whether or not the corresponding 
SL entry is to be modified.

Values: 0xffff

ccti_increase Sets the CC Table Index (CCTI) increase. Default: 1
trigger_thresho
ld

Sets the trigger threshold. Default: 2
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3.2.3 Quality of Service (QoS)
Quality of Service (QoS) requirements stem from the realization of I/O consolidation over an IB 
network. As multiple applications and ULPs share the same fabric, a means is needed to control 
their use of network resources.

ccti_min Sets the CC Table Index (CCTI) minimum. Default: 0
cct Sets all the CC table entries to a specified value . 

The first entry will remain 0, whereas last value 
will be set to the rest of the table.

Values: <comma-separated 
list>
Default: 0
When the value is set to 0, 
the CCT calculation is 
based on the number of 
nodes.

ccti_timer Sets for all SL's the given ccti timer. Default: 0
When the value is set to 0, 
the CCT calculation is 
based on the number of 
nodes.

Option File Desctiption Values

max_errors
error_window 

When number of errors exceeds 'max_errors' of 
send/receive errors or timeouts in less than 
'error_window' seconds, the CC MGR will abort 
and will allow OpenSM to proceed.

Values: 
• max_errors = 0: zero tolle-

rance - abort configuration 
on first error.

• error_window = 0: mecha-
nism disabled - no error 
checking.

Default: 5
cc_statistics_cycle Enables CC MGR to collect statistics from all 

nodes every cc_statistics_cycle [seconds]
Default: 0
When the value is set to 0, 
no statistics are collected.

Option File Desctiption Values
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Figure 5: I/O Consolidation Over InfiniBand

The basic need is to differentiate the service levels provided to different traffic flows, such that a 
policy can be enforced and can control each flow utilization of fabric resources.
The InfiniBand Architecture Specification defines several hardware features and management 
interfaces for supporting QoS:
• Up to 15 Virtual Lanes (VL) carry traffic in a non-blocking manner
• Arbitration between traffic of different VLs is performed by a two-priority-level 

weighted round robin arbiter. The arbiter is programmable with a sequence of (VL, 
weight) pairs and a maximal number of high priority credits to be processed before low 
priority is served

• Packets carry class of service marking in the range 0 to 15 in their header SL field
• Each switch can map the incoming packet by its SL to a particular output VL, based on a 

programmable table VL=SL-to-VL-MAP(in-port, out-port, SL)
• The Subnet Administrator controls the parameters of each communication flow by pro-

viding them as a response to Path Record (PR) or MultiPathRecord (MPR) queries
DiffServ architecture (IETF RFC 2474 & 2475) is widely used in highly dynamic fabrics. The 
following subsections provide the functional definition of the various software elements that 
enable a DiffServ-like architecture over the Mellanox OFED software stack.

3.2.3.1 QoS Architecture
QoS functionality is split between the SM/SA, CMA and the various ULPs. We take the “chro-
nology approach” to describe how the overall system works.
1. The network manager (human) provides a set of rules (policy) that define how the network is 

being configured and how its resources are split to different QoS-Levels. The policy also 
define how to decide which QoS-Level each application or ULP or service use.

2. The SM analyzes the provided policy to see if it is realizable and performs the necessary fab-
ric setup. Part of this policy defines the default QoS-Level of each partition. The SA is 
enhanced to match the requested Source, Destination, QoS-Class, Service-ID, PKey against 
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the policy, so clients (ULPs, programs) can obtain a policy enforced QoS. The SM may also 
set up partitions with appropriate IPoIB broadcast group. This broadcast group carries its QoS 
attributes: SL, MTU, RATE, and Packet Lifetime.

3. IPoIB is being setup. IPoIB uses the SL, MTU, RATE and Packet Lifetime available on the 
multicast group which forms the broadcast group of this partition.

4. MPI which provides non IB based connection management should be configured to run using 
hard coded SLs. It uses these SLs for every QP being opened.

5. ULPs that use CM interface (like SRP) have their own pre-assigned Service-ID and use it 
while obtaining PathRecord/MultiPathRecord (PR/MPR) for establishing connections. The 
SA receiving the PR/MPR matches it against the policy and returns the appropriate PR/MPR 
including SL, MTU, RATE and Lifetime.

6. ULPs and programs (e.g. SDP) use CMA to establish RC connection provide the CMA the 
target IP and port number. ULPs might also provide QoS-Class. The CMA then creates Ser-
vice-ID for the ULP and passes this ID and optional QoS-Class in the PR/MPR request. The 
resulting PR/MPR is used for configuring the connection QP.

PathRecord and MultiPathRecord Enhancement for QoS:
As mentioned above, the PathRecord and MultiPathRecord attributes are enhanced to carry the 
Service-ID which is a 64bit value. A new field QoS-Class is also provided.
A new capability bit describes the SM QoS support in the SA class port info. This approach pro-
vides an easy migration path for existing access layer and ULPs by not introducing new set of 
PR/MPR attributes.

3.2.3.2 Supported Policy
The QoS policy, which is specified in a stand-alone file, is divided into the following four sub-
sections:

Port Group 
A set of CAs, Routers or Switches that share the same settings. A port group might be a partition 
defined by the partition manager policy, list of GUIDs, or list of port names based on NodeDe-
scription.

Fabric Setup
Defines how the SL2VL and VLArb tables should be setup.

In OFED this part of the policy is ignored. SL2VL and VLArb tables should be config-
ured in the OpenSM options file (opensm.opts).

QoS-Levels Definition
This section defines the possible sets of parameters for QoS that a client might be mapped to. 
Each set holds SL and optionally: Max MTU, Max Rate, Packet Lifetime and Path Bits.
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Path Bits are not implemented in OFED.

Matching Rules
A list of rules that match an incoming PR/MPR request to a QoS-Level. The rules are processed 
in order such as the first match is applied. Each rule is built out of a set of match expressions 
which     should all match for the rule to apply. The matching expressions are defined for the fol-
lowing fields:
• SRC and DST to lists of port groups
• Service-ID to a list of Service-ID values or ranges
• QoS-Class to a list of QoS-Class values or ranges

3.2.3.3 CMA Features
The CMA interface supports Service-ID through the notion of port space as a prefix to the port 
number, which is part of the sockaddr provided to rdma_resolve_add(). The CMA also allows the 
ULP (like SDP) to propagate a request for a specific QoS-Class. The CMA uses the provided 
QoS-Class and Service-ID in the sent PR/MPR.

IPoIB
IPoIB queries the SA for its broadcast group information and uses the SL, MTU, RATE and 
Packet Lifetime available on the multicast group which forms this broadcast group.

SRP
The current SRP implementation uses its own CM callbacks (not CMA). So SRP fills in the Ser-
vice-ID in the PR/MPR by itself and use that information in setting up the QP.
SRP Service-ID is defined by the SRP target I/O Controller (it also complies with IBTA Service-
ID rules). The Service-ID is reported by the I/O Controller in the ServiceEntries DMA attribute 
and should be used in the PR/MPR if the SA reports its ability to handle QoS PR/MPRs.

3.2.3.4 OpenSM Features
The InfiniBand Subnet Manager (SM) be split into two main parts:

I. Fabric Setup
During fabric initialization, the Subnet Manager parses the policy and apply its settings to the 
discovered fabric elements.

II. PR/MPR Query Handling
OpenSM enforces the provided policy on client request. The overall flow for such requests is: 
first the request is matched against the defined match rules such that the target QoS-Level defini-
tion is found. Given the QoS-Level a path(s) search is performed with the given restrictions 
imposed by that level.
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3.2.4 Secure Host
Secure host enables the device to protect itself and the subnet from malicious software. This is 
achieved by:
• Not allowing untrusted entities to access the device configuration registers, directly 

(through pci_cr or pci_conf) and indirectly (through MADs)
• Hiding the M_Key from the untrusted entities
• Preventing the modification of GUID0 by the untrusted entities
• Preventing drivers on untrusted hosts to receive or transmit SMP (QP0) MAD packets 

(SMP firewall)
When the SMP firewall is enabled, the firmware handles all QP0 packets, and does not forward 
them to the driver. Any information required by the driver for proper operation (e.g., SM lid) is 
passed via events generated by the firmware while processing QP0 MADs.
Driver support mainly requires using the MAD_DEMUX firmware command at driver startup.

3.2.4.1 Secure Mode Operation
Secure mode capability is enabled by setting the "cr_protection_en" parameter set to 1 in the 
[HCA] section of the .ini file and then burning the firmware with this .ini file. If the parameter is 
set to zero, or is missing, secure-mode operation will not be possible.
Once the firmware allows secure-mode operation, the secure-mode capability must be activated 
by using "flint" to set a 64-bit key (and then restarting the driver).
The flint command is as follows (the key is specified as up to 16 hex digits):

flint -d <device> set_key <64-bit key>

Example:
flint -d /dev/mst/mt26428_pci_cr0 set_key 1a1a1a1a2b2b2b2b

3.2.4.1.1 Enabling/Disabling Hardware Access
Once a 64-bit key is installed, the secure-mode is active once the driver is restarted. If the host is 
rebooted, the HCA comes out of reboot with secure-mode enabled. Hardware access can be dis-
abled while the driver is running to enable operation such as maintenance, or firmware burning 
and then restored at the end of the operation.

The temporary enable does not affect the SMP firewall. This remains active even if the "cr-space" 
is temporarily permitted.

 To enable hardware access:
flint -d /dev/mst/mt26428_pci_cr0 hw_access enable
Enter Key: ********

 To disable hardware access:
flint -d /dev/mst/mt26428_pci_cr0 hw_access disable
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If you do not explicitly restore hardware access when the maintenance operation is completed, the 
driver restart will NOT do so. The driver will come back after restart with hardware access dis-
abled. Note, though, that the SMP firewall will still be active.

A host reboot will restore hardware access (with SMP firewall active). Thus, when you disable 
hardware access, you should restore it immediately after maintenance has been completed, either 
by using the flint command above or by rebooting the host (or both).

3.2.4.1.2 Burning New Firmware when Secure-Mode is Active
 To burn a new firmware when the secure-mode is active:
 Step 1. Temporarily enable the hardware access (see section Enabling/Disabling hardware access).
 Step 2. Burn the new firmware.
 Step 3. Reboot the host (not just restart the driver).

3.2.4.1.3 Permanently Disabling Secure-Mode
 To permanently disabled Secure-mode by setting the pass-key to zero:
 Step 1. Temporarily disable the secure-mode (see section “Enabling/Disabling Hardware Access” 

on page 124).
 Step 2. Reset the pass-key to zero.

flint -d <device> set_key 0

 Step 3. Reboot the host.
This operation will cause the HCA to always come up (even from host reboot) in unsecured 
mode. To restore security, simply set a non-zero pass-key again.

3.2.4.1.4 Checking if Hardware Access is Active
 To check if hardware access is active:

flint -d /dev/mst/mt26428_pci_cr0 -qq q

If the hardware access is active, you will see the following error message:
E- Cannot open /dev/mst/mt26428_pci_cr0: HW access is disabled on the device.
E- Run "flint -d /dev/mst/mt26428_pci_cr0 hw_access enable" in order to enable HW access.

3.2.4.1.5 Checking if the SMP Firewall is Active
The SMP firewall is active as long as there is a non-zero pass-key active in the firmware (regard-
less of whether or not the Secure-Mode has been temporarily disabled).
To check if SMP Firewall is active, run the InfiniBand diagnostic command sminfo.
If the SMP firewall is active, the command will fail as shown below:

[root@dev-l-vrt-016 ~]# sminfo
ibwarn: [26872] mad_rpc: _do_madrpc failed; dport (Lid 1)
sminfo: iberror: failed: query
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3.2.5 Upper Layer Protocols

3.2.5.1 IP over InfiniBand (IPoIB)
The IP over IB (IPoIB) driver is a network interface implementation over InfiniBand. IPoIB 
encapsulates IP datagrams over an InfiniBand Connected or Datagram transport service. The 
IPoIB driver, ib_ipoib, exploits the following capabilities:
• VLAN simulation over an InfiniBand network via child interfaces
• High Availability via Bonding
• Varies MTU values:

• up to 4k in Datagram mode
• up to 64k in Connected mode

• Uses any ConnectX® IB ports (one or two)
• Inserts IP/UDP/TCP checksum on outgoing packets
• Calculates checksum on received packets
• Support net device TSO through ConnectX® LSO capability to defragment large data-

grams to MTU quantas.
• Dual operation mode - datagram and connected
• Large MTU support through connected mode
IPoIB also supports the following software based enhancements:
• Giant Receive Offload
• NAPI
• Ethtool support

3.2.5.1.1 IPoIB Mode Setting
IPoIB can run in two modes of operation: Connected mode and Datagram mode. By default, 
IPoIB is set to work in Datagram, except for Connect-IB® adapter card which uses IPoIB with 
Connected mode as default. 
For better scalability and performance we recommend using the Datagram mode. However, the 
mode can be changed to Connected mode by editing the file /etc/infiniband/openib.conf
and setting ‘SET_IPOIB_CM=yes’.
The SET_IPOIB_CM parameter is set to “auto” by default to enable the Connected mode for Con-
nect-IB® card and Datagram for all other ConnectX® cards.
After changing the mode, you need to restart the driver by running:

/etc/init.d/openibd restart

To check the current mode used for out-going connections, enter:
cat /sys/class/net/ib<n>/mode

Changing the IPoIB mode (CM vs UD) requires the interface to be in ‘down’ state.
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3.2.5.1.1.1 Port Configuration
The physical port MTU in Datagram mode (indicates the port capability) default value is 4k, 
whereas the IPoIB port MTU ("logical" MTU ) default value is 2k as it is set by the OpenSM.
To change the IPoIB MTU to 4k, edit the OpenSM partition file in the section of IPoIB setting as 
follow:

Default=0xffff, ipoib, mtu=5 : ALL=full;

*Where "mtu=5" indicates that all IPoIB ports in the fabric are using 4k MTU, ("mtu=4" indi-
cates 2k MTU)

3.2.5.1.2 IPoIB Configuration
Unless you have run the installation script mlnxofedinstall with the flag ‘-n’, then IPoIB has 
not been configured by the installation. The configuration of IPoIB requires assigning an IP 
address and a subnet mask to each HCA port, like any other network adapter card (i.e., you need 
to prepare a file called ifcfg-ib<n> for each port). The first port on the first HCA in the host is 
called interface ib0, the second port is called ib1, and so on.
An IPoIB configuration can be based on DHCP (Section 3.2.5.1.2.1) or on a static configuration 
(Section 3.2.5.1.2.4) that you need to supply. You can also apply a manual configuration that per-
sists only until the next reboot or driver restart (Section 3.2.5.1.2.5).

3.2.5.1.2.1 IPoIB Configuration Based on DHCP
Setting an IPoIB interface configuration based on DHCP is performed similarly to the configura-
tion of Ethernet interfaces. In other words, you need to make sure that IPoIB configuration files 
include the following line:
For RedHat:

BOOTPROTO=dhcp

For IPoIB interface configuration on RHEL7 please refer to: 
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/
Networking_Guide/sec-Configuring_IPoIB.html

For SLES:
BOOTPROTO=’dchp’

If IPoIB configuration files are included, ifcfg-ib<n> files will be installed under:
/etc/sysconfig/network-scripts/  on a RedHat machine
/etc/sysconfig/network/  on a SuSE machine.

A patch for DHCP may be required for supporting IPoIB. For further information, 
please see  the REAME which is available under the docs/dhcp/ directory. 

Standard DHCP fields holding MAC addresses are not large enough to contain an IPoIB hard-
ware address. To overcome this problem, DHCP over InfiniBand messages convey a client iden-
tifier field used to identify the DHCP session. This client identifier field can be used to associate 
an IP address with a client identifier value, such that the DHCP server will grant the same IP 
address to any client that conveys this client identifier.
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The length of the client identifier field is not fixed in the specification. For the Mellanox OFED 
for Linux package, it is recommended to have IPoIB use the same format that FlexBoot uses for 
this client identifier.

3.2.5.1.2.2 DHCP Server
In order for the DHCP server to provide configuration records for clients, an appropriate config-
uration file needs to be created. By default, the DHCP server looks for a configuration file called 
dhcpd.conf under /etc. You can either edit this file or create a new one and provide its full 
path to the DHCP server using the -cf flag (See a file example at docs/dhcpd.conf).
The DHCP server must run on a machine which has loaded the IPoIB module.
To run the DHCP server from the command line, enter:

dhcpd <IB network interface name> -d

Example:
host1# dhcpd ib0 -d

3.2.5.1.2.3 DHCP Client (Optional)

A DHCP client can be used if you need to prepare a diskless machine with an 
IB driver.

In order to use a DHCP client identifier, you need to first create a configuration file that defines 
the DHCP client identifier.  
Then run the DHCP client with this file using the following command:

dhclient –cf <client conf file> <IB network interface name>

Example of a configuration file for the ConnectX (PCI Device ID 26428), called 
dhclient.conf:

# The value indicates a hexadecimal number
interface "ib1" {
send dhcp-client-identifier 
ff:00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:03:00:00:10:39;
}

Example of a configuration file for InfiniHost III Ex (PCI Device ID 25218), called 
dhclient.conf:

# The value indicates a hexadecimal number
interface "ib1" {
send dhcp-client-identifier 
20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;
}

In order to use the configuration file, run:
host1# dhclient –cf dhclient.conf ib1

3.2.5.1.2.4 Static IPoIB Configuration
If you wish to use an IPoIB configuration that is not based on DHCP, you need to supply the 
installation script with a configuration file (using the ‘-n’ option) containing the full IP configu-
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ration. The IPoIB configuration file can specify either or both of the following data for an IPoIB 
interface:
• A static IPoIB configuration
• An IPoIB configuration based on an Ethernet configuration

See your Linux distribution documentation for additional information about configuring IP 
addresses.

The following code lines are an excerpt from a sample IPoIB configuration file:
# Static settings; all values provided by this file
IPADDR_ib0=11.4.3.175
NETMASK_ib0=255.255.0.0
NETWORK_ib0=11.4.0.0
BROADCAST_ib0=11.4.255.255
ONBOOT_ib0=1
# Based on eth0; each '*' will be replaced with a corresponding octet
# from eth0.
LAN_INTERFACE_ib0=eth0
IPADDR_ib0=11.4.'*'.'*'
NETMASK_ib0=255.255.0.0
NETWORK_ib0=11.4.0.0
BROADCAST_ib0=11.4.255.255
ONBOOT_ib0=1
# Based on the first eth<n> interface that is found (for n=0,1,...);
# each '*' will be replaced with a corresponding octet from eth<n>.
LAN_INTERFACE_ib0=
IPADDR_ib0=11.4.'*'.'*'
NETMASK_ib0=255.255.0.0
NETWORK_ib0=11.4.0.0
BROADCAST_ib0=11.4.255.255
ONBOOT_ib0=1

3.2.5.1.2.5 Manually Configuring IPoIB

This manual configuration persists only until the next reboot or driver restart.

To manually configure IPoIB for the default IB partition (VLAN), perform the following steps:
 Step 1. To configure the interface, enter the ifconfig command with the following items:

• The appropriate IB interface (ib0, ib1, etc.)
• The IP address that you want to assign to the interface
• The netmask keyword
• The subnet mask that you want to assign to the interface

     The following example shows how to configure an IB interface:
host1$ ifconfig ib0 11.4.3.175 netmask 255.255.0.0
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 Step 2. (Optional) Verify the configuration by entering the ifconfig command with the appropriate 
interface identifier ib# argument.

      The following example shows how to verify the configuration:
host1$ ifconfig ib0
b0  Link encap:UNSPEC  HWaddr 80-00-04-04-FE-80-00-00-00-00-00-00-00-00-00-00  
inet addr:11.4.3.175  Bcast:11.4.255.255  Mask:255.255.0.0
UP BROADCAST MULTICAST  MTU:65520  Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:128 
RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

 Step 3. Repeat Step 1 and Step 2 on the remaining interface(s).

3.2.5.1.3 Subinterfaces
You can create subinterfaces for a primary IPoIB interface to provide traffic isolation. Each such 
subinterface (also called a child interface) has a different IP and network addresses from the pri-
mary (parent) interface. The default Partition Key (PKey), ff:ff, applies to the primary (parent) 
interface.
This section describes how to
• Create a subinterface (Section 3.2.5.1.3.1)
• Remove a subinterface (Section 3.2.5.1.3.2)

3.2.5.1.3.1 Creating a Subinterface

In the following procedure, ib0 is used as an example of an IB subinterface.

To create a child interface (subinterface), follow this procedure:
 Step 1. Decide on the PKey to be used in the subnet (valid values can be 0 or any 16-bit unsigned 

value). The actual PKey used is a 16-bit number with the most significant bit set. For exam-
ple, a value of 1 will give a PKey with the value 0x8001.

 Step 2. Create a child interface by running:
host1$ echo <PKey> > /sys/class/net/<IB subinterface>/create_child 

Example:
host1$ echo 1 > /sys/class/net/ib0/create_child 

This will create the interface ib0.8001.

 Step 3. Verify the configuration of this interface by running:
host1$ ifconfig <subinterface>.<subinterface PKey>

Using the example of Step 2:
host1$ ifconfig ib0.8001
ib0.8001  Link encap:UNSPEC  HWaddr 80-00-00-4A-FE-80-00-00-00-00-00-00-00-00-00-00  
BROADCAST MULTICAST  MTU:2044  Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
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TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:128 
RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

 Step 4. As can be seen, the interface does not have IP or network addresses. To configure those, you 
should follow the manual configuration procedure described in Section 3.2.5.1.2.5.

 Step 5. To be able to use this interface, a configuration of the Subnet Manager is needed so that the 
PKey chosen, which defines a broadcast address, be recognized.

3.2.5.1.3.2 Removing a Subinterface
To remove a child interface (subinterface), run:

echo <subinterface PKey> /sys/class/net/<ib_interface>/delete_child 

Using the example of Step 2:
echo 0x8001 > /sys/class/net/ib0/delete_child 

Note that when deleting the interface you must use the PKey value with the most significant bit 
set (e.g., 0x8000 in the example above).

3.2.5.1.4 Verifying IPoIB Functionality
To verify your configuration and your IPoIB functionality, perform the following steps:
 Step 1. Verify the IPoIB functionality by using the ifconfig command.

The following example shows how two IB nodes are used to verify IPoIB functionality. In 
the following example, IB node 1 is at 11.4.3.175, and IB node 2 is at 11.4.3.176:

host1# ifconfig ib0 11.4.3.175 netmask 255.255.0.0
host2# ifconfig ib0 11.4.3.176 netmask 255.255.0.0

 Step 2. Enter the ping command from 11.4.3.175 to 11.4.3.176.
The following example shows how to enter the ping command:

host1# ping -c 5 11.4.3.176
PING 11.4.3.176 (11.4.3.176) 56(84) bytes of data.
64 bytes from 11.4.3.176: icmp_seq=0 ttl=64 time=0.079 ms
64 bytes from 11.4.3.176: icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from 11.4.3.176: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 11.4.3.176: icmp_seq=3 ttl=64 time=0.049 ms
64 bytes from 11.4.3.176: icmp_seq=4 ttl=64 time=0.065 ms
--- 11.4.3.176 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3999ms rtt min/avg/max/mdev = 
0.044/0.058/0.079/0.014 ms, pipe 2

3.2.5.1.5 Bonding IPoIB
To create an interface configuration script for the ibX and bondX interfaces, you should use the 
standard syntax (depending on your OS). 
Bonding of IPoIB interfaces is accomplished in the same manner as would bonding of Ethernet 
interfaces: via the Linux Bonding Driver. 
• Network Script files for IPoIB slaves are named after the IPoIB interfaces (e.g:  ifcfg-

ib0)
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• The only meaningful bonding policy in IPoIB is High-Availability (bonding mode num-
ber 1, or active-backup)  

• Bonding parameter "fail_over_mac" is meaningless in IPoIB interfaces, hence, the only 
supported value is the default:  0 (or "none" in SLES11)

For a persistent bonding IPoIB Network configuration, use the same Linux Network Scripts 
semantics, with the following exceptions/ additions:
• In the bonding master configuration file (e.g:  ifcfg-bond0), in addition to Linux bonding 

semantics, use the following parameter:  MTU=65520

65520 is a valid MTU value only if all IPoIB slaves operate in Connected mode (See 
Section 3.2.5.1.1, “IPoIB Mode Setting”, on page 126) and are configured with 
the same value. For IPoIB slaves that work in datagram mode, use MTU=2044.  If you 
do not set the correct MTU or do not set MTU at all, performance of the interface 
might decrease.

• In the bonding slave configuration file (e.g:  ifcfg-ib0), use the same Linux Network 
Scripts semantics. In particular:  DEVICE=ib0

• In the bonding slave configuration file (e.g:  ifcfg-ib0.8003), the line TYPE=InfiniBand 
is necessary when using bonding over devices configured with partitions (p_key)

• For RHEL users:
In /etc/modprobe.b/bond.conf add the following lines:

alias bond0 bonding

• For SLES users:
It is necessary to update the MANDATORY_DEVICES  environment variable in /etc/syscon-
fig/network/config with the names of the IPoIB slave devices (e.g. ib0, ib1, etc.).  Otherwise, 
bonding master may be created before IPoIB slave interfaces at boot time.
It is possible to have multiple IPoIB bonding masters and a mix of IPoIB bonding master and 
Ethernet bonding master. However, It is NOT possible to mix Ethernet and IPoIB slaves under 
the same bonding master

Restarting openibd does no keep the bonding configuration via Network Scripts.  You 
have to restart the network service in order to bring up the bonding master. After the 
configuration is saved, restart the network service by running:  /etc/init.d/network 
restart.

3.2.5.2 Ethernet Tunneling Over IPoIB Driver (eIPoIB)
The eth_ipoib driver provides a standard Ethernet interface to be used as a Physical Interface 
(PIF) into the Hypervisor virtual network, and serves one or more Virtual Interfaces (VIF). This 
driver supports L2 Switching (Direct Bridging) as well as other L3 Switching modes (e.g. NAT). 
This document explains the configuration and driver behavior when configured in Bridging
mode.
In virtualization environment, a virtual machine can be expose to the physical network by per-
forming the next setting:
 Step 1. Create a virtual bridge
 Step 2. Attach the para-virtualized interface created by the eth_ipoib driver to the bridge
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 Step 3. Attach the Ethernet interface in the Virtual Machine to that bridge 
The diagram below describes the topology that was created after these steps:

The diagram shows how the traffic from the Virtual Machine goes to the virtual-bridge in the 
Hypervisor and from the bridge to the eIPoIB interface. eIPoIB interface is the Ethernet interface 
that enslaves the IPoIB interfaces in order to send/receive packets from the Ethernet interface in 
the Virtual Machine to the IB fabric beneath.

3.2.5.2.1 Enabling the eIPoIB Driver
Once the mlnx_ofed driver installation is completed, perform the following: 
 Step 1. Open the /etc/infiniband/openib.conf file and include:

E_IPOIB_LOAD=yes

 Step 2. Restart the InfiniBand drivers.
/etc/init.d/openibd restart

3.2.5.2.2 Configuring the Ethernet Tunneling Over IPoIB Driver
When eth_ipoib is loaded, number of eIPoIB interfaces are created, with the following default 
naming scheme: ethX, where X represents the ETH port available on the system.
To check which eIPoIB interfaces were created:

cat /sys/class/net/eth_ipoib_interfaces
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For example, on a system with dual port HCA, the following two interfaces might be created; 
eth4 and eth5.

cat /sys/class/net/eth_ipoib_interfaces
eth4 over IB port: ib0
eth5 over IB port: ib1

These interfaces can be used to configure the network for the guest. For example, if the guest has 
a VIF that is connected to the Virtual Bridge br0, then enslave the eIPoIB interface to br0 by 
running:

# brctl addif br0 ethX

In RHEL KVM environment, there are other methods to create/configure your virtual net-
work (e.g. macvtap). For additional information, please refer to the Red Hat User Manual.

The IPoIB daemon (ipoibd) detects the new virtual interface that is attached to the same bridge as 
the eIPoIB interface and creates a new IPoIB instances for it in order to send/receive data. As a 
result, number of IPoIB interfaces (ibX.Y) are shown as being created/destroyed, and are being 
enslaved to the corresponding ethX interface to serve any active VIF in the system according to 
the set configuration, This process is done automatically by the ipoibd service.
 To see the list of IPoIB interfaces enslaved under eth_ipoib interface.

# cat /sys/class/net/ethX/eth/vifs

For example:
# cat /sys/class/net/eth5/eth/vifs
  SLAVE=ib0.1      MAC=9a:c2:1f:d7:3b:63 VLAN=N/A
  SLAVE=ib0.2      MAC=52:54:00:60:55:88 VLAN=N/A
  SLAVE=ib0.3      MAC=52:54:00:60:55:89 VLAN=N/A

Each ethX interface has at lease one ibX.Y slave to serve the PIF itself. In the VIFs list of ethX 
you will notice that ibX.1 is always created to serve applications running from the Hypervisor on 
top of the ethX interface directly.
For InfiniBand applications that require native IPoIB interfaces (e.g. CMA), the original IPoIB 
interfaces ibX can still be used. For example, CMA and ethX drivers can co-exist and make use 
of IPoIB ports; CMA can use ib0, while eth0.ipoib interface will use ibX.Y interfaces.
 To see the list of eIPoIB interfaces.

# cat /sys/class/net/eth_ipoib_interfaces

For example:
# cat /sys/class/net/eth_ipoib_interfaces
  eth4 over IB port: ib0
  eth5 over IB port: ib1

The example above shows, two eIPoIB interfaces, where eth4 runs traffic over ib0, and eth5 runs 
traffic over ib1.
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Figure 6: An Example of a Virtual Network

The example above shows a few IPoIB instances that serve the virtual interfaces at the Virtual 
Machines.
To display the services provided to the Virtual Machine interfaces:

# cat /sys/class/net/eth0/eth/vifs

Example:
# cat /sys/class/net/eth0/eth/vifs
  SLAVE=ib0.2 MAC=52:54:00:60:55:88 VLAN=N/A

In the example above the ib0.2 IPoIB interface serves the MAC 52:54:00:60:55:88 with no 
VLAN tag for that interface. 

3.2.5.2.3 VLAN Configuration Over an eIPoIB Interface
eIPoIB driver supports VLAN Switch Tagging (VST) mode, which enables the virtual machine 
interface to have no VLAN tag over it, thus allowing VLAN tagging to be handled by the Hyper-
visor.
 To attach a Virtual Machine interface to a specific isolated tag:
 Step 1. Verify the VLAN tag to be used has the same pkey value that is already configured on that 

ib port.
# cat /sys/class/infiniband/mlx4_0/ports/<ib port>/pkeys/*

 Step 2. Create a VLAN interface in the Hypervisor, over the eIPoIB interface.
# vconfig add <eIPoIB interface> <vlan tag>

 Step 3. Attach the new VLAN interface to the same bridge that the virtual machine interface is 
already attached to.

# brctl addif <br-name> <interface-name>

For example, to create the VLAN tag 3 with pkey 0x8003 over that port in the eIPoIB interface 
eth4, run:

#vconfig add eth4 3
#brctl addif br2 eth4.3
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3.2.5.2.4 Setting Performance Tuning
• Use 4K MTU over OpenSM.

Default=0xffff, ipoib, mtu=5 : ALL=full;

• Use MTU for 4K (4092 Bytes):
• In UD mode, the maximum MTU value is 4092 Bytes 
Make sure that all interfaces (including the guest interface and its virtual bridge) have the same 
MTU value (MTU 4092 Bytes). For further information of MTU settings, please refer to the 
Hypervisor User Manual.

• Tune the TCP/IP stack using sysctl (dom0/domu)
# /sbin/sysctl_perf_tuning

• Other performance tuning for KVM environment such as vCPU pinning and NUMA 
tuning may apply. For further information, please refer to the Hypervisor User Manual.

3.2.5.3 Ethernet over IB (EoIB)
The Ethernet over IB (EoIB) mlx4_vnic module is a network interface implementation over 
InfiniBand. EoIB encapsulates Layer 2 datagrams over an InfiniBand Datagram (UD) transport 
service. The InfiniBand UD datagrams encapsulates the entire Ethernet L2 datagram and its pay-
load.
To perform this operation the module performs an address translation from Ethernet layer 2 
MAC addresses (48 bits long) to InfiniBand layer 2 addresses made of LID/GID and QPN. This 
translation is totally invisible to the OS and user. Thus, differentiating EoIB from IPoIB which 
exposes a 20 Bytes HW address to the OS. The mlx4_vnic module is designed for Mellanox's 
ConnectX® family of HCAs and intended to be used with Mellanox's BridgeX® gateway family. 
Having a BridgeX gateway is a requirement for using EoIB. It performs the following operations:
• Enables the layer 2 address translation required by the mlx4_vnic module.
• Enables routing of packets from the InfiniBand fabric to a 1 or 10 GigE Ethernet subnet.  

3.2.5.3.1 Ethernet over IB Topology
EoIB is designed to work over an InfiniBand fabric and requires the presence of two entities:
• Subnet Manager (SM)

The required subnet manager configuration is not unique to EoIB but rather similar to other Infini-
Band applications and ULPs. 

• BridgeX gateway
The BridgeX gateway is at the heart of EoIB. On one side, usually referred to as the "internal" side, it 
is connected to the InfiniBand fabric by one or more links. On the other side, usually referred to as the 
"external" side, it is connected to the Ethernet subnet by one or more ports. The Ethernet connections 
on the BridgeX's external side are called external ports or eports. Every BridgeX that is in use with 
EoIB needs to have one or more eports connected.

3.2.5.3.1.1 External Ports (eports) and Gateway
The combination of a specific BridgeX box and a specific eport is referred to as a gateway. The 
gateway is an entity that is visible to the EoIB host driver and is used in the configuration of the 
network interfaces on the host side. For example, in the host administered vNics the user will 
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request to open an interface on a specific gateway identifying it by the BridgeX box and eport 
name. 
Distinguishing between gateways is essential because they determine the network topology and 
affect the path that a packet traverses between hosts. A packet that is sent from the host on a spe-
cific EoIB interface will be routed to the Ethernet subnet through a specific external port connec-
tion on the BridgeX box.

3.2.5.3.1.2 Virtual Hubs (vHubs)
Virtual hubs connect zero or more EoIB interfaces (on internal hosts) and an eport through a vir-
tual hub. Each vHub has a unique virtual LAN (VLAN) ID. Virtual hub participants can send 
packets to one another directly without the assistance of the Ethernet subnet (external side) rout-
ing. This means that two EoIB interfaces on the same vHub will communicate solely using the 
InfiniBand fabric. EoIB interfaces residing on two different vHubs (whether on the same gate-
way or not) cannot communicate directly.
There are two types of vHubs: 
• a default vHub (one per gateway) without a VLAN ID 
• vHubs with unique different VLAN IDs 
Each vHub belongs to a specific gateway (BridgeX® + eport), and each gateway has one default 
vHub, and zero or more VLAN-associated vHubs. A specific gateway can have multiple vHubs 
distinguishable by their unique VLAN ID. Traffic coming from the Ethernet side on a specific 
eport will be routed to the relevant vHub group based on its VLAN tag (or to the default vHub for 
that GW if no vLan ID is present).

3.2.5.3.1.3 Virtual NIC (vNic)
A virtual NIC is a network interface instance on the host side which belongs to a single vHub on 
a specific GW. The vNic behaves similar to any regular hardware network interface. The host can 
have multiple interfaces that belong to the same vHub. 

3.2.5.3.2 EoIB Configuration
mlx4_vnic module supports two different modes of configuration which is passed to the host 
mlx4_vnic driver using the EoIB protocol: 
• host administration where the vNic is configured on the host side 
• network administration where the configuration is done by the BridgeX 
Both modes of operation require the presence of a BridgeX gateway in order to work properly. 
The EoIB driver supports a mixture of host and network administered vNics.

3.2.5.3.2.1 EoIB Host Administered vNic
In the host administered mode, vNics are configured using static configuration files located on 
the host side. These configuration files define the number of vNics, and the vHub that each host 
administered vNic will belong to (i.e., the vNic's BridgeX box, eport and VLAN id properties). 
The mlx4_vnic_confd service is used to read these configuration files and pass the relevant data 
to the mlx4_vnic module. EoIB Host Administered vNic supports two forms of configuration 
files: 
• “Central Configuration File - /etc/infiniband/mlx4_vnic.conf”
• “vNic Specific Configuration Files - ifcfg-ethX”
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Both forms of configuration supply the same functionality. If both forms of configuration files 
exist, the central configuration file has precedence and only this file will be used. 

3.2.5.3.2.2 Central Configuration File - /etc/infiniband/mlx4_vnic.conf
The mlx4_vnic.conf file consists of lines, each describing one vNic. The following file format is 
used:

name=eth47 mac=00:25:8B:27:16:84 ib_port=mlx4_0:1 vid=2 vnic_id=7 bx=BX001 eport=A11

The fields used in the file have the following meaning:
Table 5 - mlx4_vnic.conf file format

Field Description

name The name of the interface that is displayed when running ifconfig.

mac The mac address to assign to the vNic.

ib_port The device name and port number in the form [device name]:[port 
number]. The device name can be retrieved by running ibv_devinfo 
and using the output of hca_id field. The port number can have a 
value of  1 or 2.

vid [Optional field] If VLAN ID exists, the vNic will be assigned the 
specified VLAN ID. This value must be between 0 and 4095.

•If the vid is set to 'all', the ALL-VLAN mode will be enabled and the vNic 
will support multiple vNic tags.

•If no vid is specified or value -1 is set, the vNic will be assigned to the 
default vHub associated with the GW.

vnic_id A unique number per vNic between 0 and 16K.

bx The BridgeX box system GUID or system name string. 

eport The string describing the eport name.

pkey [Optional field] If discovery_pkey module parameter is set, this value 
will control which partitions would be used to discover the gateways.
For more information about discovery_pkeys please refer to 
Section 3.2.5.3.3.5, “Discovery Partitions Configuration”, on 
page 144

3.2.5.3.2.3 vNic Specific Configuration Files - ifcfg-ethX
EoIB configuration can use the ifcfg-ethX files used by the network service to derive the needed 
configuration. In such case, a separate file is required per vNic. Additionally, you need to update 
the ifcfg-ethX file and add some new attributes to it. 
On Red Hat Linux, the new file will be of the form:

DEVICE=eth2 
HWADDR=00:30:48:7d:de:e4 
BOOTPROTO=dhcp 
ONBOOT=yes 
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BXADDR=BX001 
BXEPORT=A10 
VNICIBPORT=mlx4_0:1 
VNICVLAN=3  (Optional field)
GW_PKEY=0xfff1

The fields used in the file for vNic configuration have the following meaning:
Table 6 - Red Hat Linux mlx4_vnic.conf file format

Field Description

DEVICE An optional field. The name of the interface that is displayed when 
running ifconfig. If it is not present, the trailer of the configuration 
file name (e.g. ifcfg-eth47 => "eth47") is used instead.

HWADDR The mac address to assign the vNic.

BXADDR The BridgeX box system GUID or system name string.

BXEPORT The string describing the eport name.

VNICVLAN [Optional field] If it exists, the vNic will be assigned the VLAN ID 
specified. This value must be between 0 and 4095 or  'all' for ALL-
VLAN feature.

VNICIBPORT The device name and port number in the form [device name]:[port 
number]. The device name can be retrieved by running ibv_devinfo 
and using the output of hca_id field. The port number can have a 
value of 1 or 2.

GW_PKEY [Optional field] If discovery_pkey module parameter is set, this value 
will control on what partition would be used to discover the gateways.
For more information about discovery_pkeys please refer to 
Section 3.2.5.3.3.5, “Discovery Partitions Configuration”, on 
page 144

Other fields available for regular eth interfaces in the ifcfg-ethX files may also be used.

3.2.5.3.2.4 mlx4_vnic_confd
Once the configuration files are updated, the host administered vNics can be created. To manage 
the  host administrated vNics, run the following script:

Usage: /etc/init.d/mlx4_vnic_confd {start|stop|restart|reload|status}

This script manages host administrated vNics only, to retrieve general information about the 
vNics on the system including network administrated vNics, refer to Section 3.2.5.3.3.1, 
“mlx4_vnic_info”, on page 142.

When using BXADDR/bx field, all vNics BX address configuration should be consis-
tent: either all of them use GUID format, or name format.
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The MAC and VLAN values are set using the configuration files only, other tools such 
as (vconfig) for VLAN modification, or (ifconfig) for MAC modification, are not sup-
ported.

3.2.5.3.2.5 EoIB Network Administered vNic
In network administered mode, the configuration of the vNic is done by the BridgeX®. If a vNic 
is configured for a specific host, it will appear on that host once a connection is established 
between the BridgeX and the mlx4_vnic module. This connection between the mlx4_vnic mod-
ules and all available BridgeX boxes is established automatically  when the mlx4_vnic module is 
loaded. If the BridgeX is configured to remove the vNic, or if the connection between the host 
and BridgeX is lost, the vNic interface will disappear (running ifconfig will not display the inter-
face). Similar to host administered vNics, a network administered, vNic resides on a specific 
vHub. 
For further information on how to configure a network administered vNic, please refer to 
BridgeX documentation.
To disable network administered vNics on the host side load mlx4_vnic module with the 
net_admin module parameter set to 0.

3.2.5.3.2.6 VLAN Configuration
A vNic instance is associated with a specific vHub group. This vHub group is connected to a 
BridgeX external port and has a VLAN tag attribute. When creating/configuring a vNic you 
define the VLAN tag it will use via the vid or the VNICVLAN fields (if these fields are absent, 
the vNic will not have a VLAN tag). The vNic's VLAN tag will be present in all EoIB packets 
sent by the vNics and will be verified on all packets received on the vNic. When passed from the 
InfiniBand to Ethernet,the EoIB encapsulation will be disassembled but the VLAN tag will 
remain.
For example, if the vNic "eth23" is associated with a vHub that uses BridgeX "bridge01", eport 
"A10" and VLAN tag 8, all incoming and outgoing traffic on eth23 will use a VLAN tag of 8. 
This will be enforced by both BridgeX and destination hosts. When a packet is passed from the 
internal fabric to the Ethernet subnet through the BridgeX it will have a "true" Ethernet VLAN 
tag of 8.
The VLAN implementation used by EoIB uses operating systems unaware of VLANs. This is in 
many ways similar to switch tagging in which an external Ethernet switch adds/strips tags on 
traffic preventing the need of OS intervention. EoIB does not support OS aware VLANs in the 
form of vconfig.

3.2.5.3.2.7 Configuring VLANs
To configure VLAN tag for a vNic, add the VLAN tag property to the configuration file in host 
administrated mode, or configure the vNic on the appropriate vHub in network administered 
mode. In the host administered mode when a vHub with the requested VLAN tag is not available, 
the vNIC's login request will be rejected.
• Host administered VLAN configuration in centralized configuration file can be modified 

as follow:
Add "vid=<VLAN tag>" or remove vid property for no VLAN

• Host administered VLAN configuration with ifcfg-ethX configuration files can be modi-
fied as follow:
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Add "VNICVLAN=<VLAN tag>" or remove VNICVLAN property for no VLAN

Using a VLAN tag value of 0 is not recommended because the traffic using it would 
not be separated from non VLAN traffic.

For Host administered vNics, VLAN entry must be set in the BridgeX first. For further 
information, please refer to BridgeX® documentation.

3.2.5.3.2.8 EoIB Multicast Configuration
Configuring Multicast for EoIB interfaces is identical to multicast configuration for native Ether-
net interfaces.

EoIB maps Ethernet multicast addresses to InfiniBand MGIDs (Multicast GID). It 
ensures that different vHubs use mutually exclusive MGIDs. Thus preventing vNics on 
different vHubs from communicating with one another.

3.2.5.3.2.9 EoIB and Quality of Service
EoIB enables the use of InfiniBand service levels. The configuration of the SL is performed 
through the BridgeX and lets you set different data/control service level values per BridgeX® 
box.
For further information on the use of non default service levels, please refer to BridgeX docu-
mentation. 

3.2.5.3.2.10 IP Configuration Based on DHCP
Setting an EoIB interface configuration based on DHCP (v3.1.2 which is available via 
www.isc.org) is performed similarly to the configuration of Ethernet interfaces. When setting the 
EoIB configuration files, verify that it includes following lines:
• For RedHat: BOOTPROTO=dhcp
• For SLES: BOOTPROTO='dchp'

If EoIB configuration files are included, ifcfg-eth<n> files will be installed under /etc/
sysconfig/network-scripts/ on a RedHat machine and under /etc/sysconfig/network/ on 
a SuSE machine.

3.2.5.3.2.11 DHCP Server
Using a DHCP server with EoIB does not require special configuration. The DHCP server can 
run on a server located on the Ethernet side (using any Ethernet hardware) or on a server located 
on the InfiniBand side and running EoIB module.

3.2.5.3.2.12 Static EoIB Configuration
To configure a static EoIB you can use an EoIB configuration that is not based on DHCP. Static 
configuration is similar to a typical Ethernet device configuration. For further information on 
how to configure IP addresses, please refer to your Linux distribution documentation.
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Ethernet configuration files are located at /etc/sysconfig/network-scripts/ on a RedHat 
machine and at /etc/sysconfig/network/ on a SuSE machine.

3.2.5.3.2.13 Sub Interfaces (VLAN)
EoIB interfaces do not support creating sub interfaces via the vconfig command, unless working 
in ALL VLAN mode.. To create interfaces with VLAN, refer to Section 3.2.5.3.2.7, “Configur-
ing VLANs”, on page 140.

3.2.5.3.3 Retrieving EoIB Information

3.2.5.3.3.1 mlx4_vnic_info
To retrieve information regarding EoIB interfaces, use the script mlx4_vnic_info. This script pro-
vides detailed information about a specific vNic or all EoIB vNic interfaces, such as: BX info, 
IOA info, SL, PKEY, Link state and interface features. If network administered vNics are 
enabled, this script can also be used to discover the available BridgeX® boxes from the host side.
• To discover the available gateway, run:

mlx4_vnic_info -g

• To receive the full vNic information of eth10, run:
mlx4_vnic_info -i eth10

• To receive a shorter information report on eth10, run:
mlx4_vnic_info -s eth10

• To get help and usage information, run:
mlx4_vnic_info --help

3.2.5.3.3.2 Link State
An EoIB interface can report two different link states:
• The physical link state of the interface that is made up of the actual HCA port link state 

and the status of the vNics connection with the BridgeX®. If the HCA port link state is 
down or the EoIB connection with the BridgeX has failed, the link will be reported as 
down because without the connection to the BridgeX the EoIB protocol cannot work and 
no data can be sent on the wire. The mlx4_vnic driver can also report the status of the 
external BridgeX port status by using the mlx4_vnic_info script. If the 
eport_state_enforce module parameter is set, then the external port   state will be 
reported as the vNic interface link state. If the connection between the vNic and the 
BridgeX is broken (hence the external port state is unknown)the link will be reported as 
down.

• the link state of the external port associated with the vNic interface 

A link state is down on a host administrated vNic, when the BridgeX is connected and 
the InfiniBand fabric appears to be functional. The issue might result from a miscon-
figuration of either BXADDR or/and BXEPORT configuration file.
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To query the link state run the following command and look for "Link detected":
ethtool <interface name>

Example:

ethtool eth10
Settings for eth10:
Supported ports: [ ]
Supported link modes:
Supports auto-negotiation: No
Advertised link modes:  Not reported
Advertised auto-negotiation: No
Speed: Unknown! (10000)
Duplex: Full
Port: Twisted Pair
PHYAD: 0
Transceiver: internal
Auto-negotiation: off
Supports Wake-on: d
Wake-on: d
Current message level: 0x00000000 (0)
Link detected: yes

3.2.5.3.3.3 Bonding Driver
EoIB uses the standard Linux bonding driver. For more information on the Linux Bonding driver 
please refer to:
<kernel-source>/Documentation/networking/bonding.txt.
Currently only fail-over modes are supported by the EoIB driver, load-balancing modes includ-
ing static and dynamic (LACP) configurations are not supported.

3.2.5.3.3.4 Jumbo Frames
EoIB supports jumbo frames up to the InfiniBand limit of 4K bytes. The default Maximum 
Transmit Unit (MTU) for EoIB driver is 1500 bytes.
 To configure EoIB to work with jumbo frames:
1. Make sure that the IB HCA and Switches hardware support 4K MTU.
2. Configure Mellanox low level driver to support 4K MTU. Add:

mlx4_core module parameter to set_4k_mtu=1

3. Change the MTU value of the vNic, for example, run:
 ifconfig eth2 mtu 4038

Due to EoIB protocol overhead, the maximum MTU value that can be set for the vNic 
interface is: 4038 bytes. If the vNic is configured to use VLANs, then the maximum 
MTU is: 4034 bytes (due to VLAN header insertion).
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3.2.5.3.3.5 Discovery Partitions Configuration
EoIB enables mapping of VLANs to InfiniBand partitions. Mapping VLANs to partitions causes 
all EoIB data traffic and all vNic related control traffic to be sent to the mapped partitions. In rare 
cases, it might be useful to ensure that EoIB discovery packets (packets used for discovery of 
Gateways (GWs) and vice versa) are sent to a non default partition. This might be used to limit 
and enforce the visibility of GWs by different hosts.
The discovery_pkeys module parameter can be used to define which partitions would be used 
to discove the GWs. The module parameters allow the using of up to 24 different PKEYs. If not 
set, the default PKEY will be used, and only GWs using the default PKEY would be discovered.
For example, to configure a host to discover GWs on three partitions 0xffff,0xfff1 and 0x3 add 
the following line to modprobe configuration file:

options mlx4_vnic discovery_pkeys=0xffff,0xfff1,0x3

When using this feature combined with host administrated vnics, each vnic should also be con-
figured with the partition it should be created on.
For example, for creating host admin vnic on I/F eth20, with pkey 0xfff1 add the following line 
to ifcg-eth20:

GW_PKEY=0xfff1

When using a non default partition, the GW partitions should also be configured on the 
GW in the BridgeX. Additionally, the Subnet Manager must be configured accordingly.

3.2.5.3.3.6 ALL VLAN
In Ethernet over InfiniBand (EoIB), a vNic is a member of a vHUB that uniquely defines its Vir-
tual Local Area Networks (VLAN) tag. The VLAN tag is used in the VLAN header within the 
EoIB packets, and is enforced by EoIB hosts when handling the EoIB packets. The tag is also 
extended to the Ethernet fabric when packets pass through the BridgeX®. This model of opera-
tion ensures a high level of security however, it requires each VLAN tag used to have its own 
individual vNic to be created and each vHub requires InfiniBand fabric resources like multicast 
groups (MGIDs). 
If many VLANs are needed, the resources required to create and manage them are large. ALL 
VLAN vHub enables the user to use its resources efficiently by creating a vNic that can support 
multiple VLAN tags without creating multiple vNics. However, it reduces VLAN separation 
compared to the vNic /vHub model. 

3.2.5.3.3.7 ALL VLAN Functionality
When ALL VLAN is enabled, the address lookup on the BridgeX® consists of the MAC address 
only (without the VLAN), so all packets with the same MAC regardless of the VLAN, are sent to 
the same InfiniBand address. Same behavior can be expected from the host EoIB driver, which 
also sends packets to the relevant InfiniBand addresses while disregarding the VLAN. In both 
scenarious, the Ethernet packet that is embedded in the EoIB packet includes the VLAN header 
enabling VLAN enforcement either in the Ethernet fabric or at the receiving EoIB host.
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ALL VLAN must be supported by both the BridgeX® and by the host side.

When enabling ALL VLAN, all gateways (LAG or legacy) that  have eports belonging 
to a gateway group (GWG) must be configured  to the same behavior. 
For example it is impossible to have gateway A2 configured to all-vlan mode and A3 
to regular mode, because both belong to GWG A.

A gateway that is configured to work in ALL VLAN mode cannot accept login   
requests from 

•vNics that do not support this mode
•host admin vNics that were not configured to work in ALL VLAN mode, by setting 

the vlan-id value to a 'all' as as described in Section 3.2.5.3.3.8, “Creating 
vNICs that Support ALL VLAN Mode”, on page 145.

3.2.5.3.3.8 Creating vNICs that Support ALL VLAN Mode
VLANs are created on a vNIC that supports ALL VLAN mode using "vconfig".
• net-admin vNics

The net-admin vNic supports ALL VLAN mode once it is created on a gateway configured with All-
VLAN mode.

• host-admin vNics
• To create an ALL VLAN vnic, set the VLAN's ID to 'all'. 

A gateway that is configured to work in ALL VLAN mode, can only accept login requests from hosts that 
are also working in a VLAN mode. e.g. the VLAN ID must be set to 'all'. 

This is an example of how to create an ALL VLAN vNic using the mlx4_vnic.conf file:
name=eth44 mac=00:25:8B:27:14:78 ib_port=mlx4_0:1 vid=all vnic_id=5 

bx=00:00:00:00:00:00:04:B2 eport=A10

• To create an All-VLAN vNic using a specific configuration file, add the following  line to the con-
figuration file:
VNICVLAN=all

For further information on how to create host-admin vNics, please see Section 3.2.5.3.2.1, “EoIB 
Host Administered vNic”, on page 137 EoIB Host Administered vNic.

3.2.5.3.3.9 Checking the Configuration
To verify the gateway / vNic is configured with the All-VLAN mode, use the mlx4_vnic_info 
script. 
• Gateway Support

To verify the gateway is configured to All-VLAN mode. Run:
mlx4_vnic_info -g <GW-NAME>
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Example:
# mlx4_vnic_info -g A2
IOA_PORT      mlx4_0:1
BX_NAME       bridge-119c64
BX_GUID       00:02:c9:03:00:11:61:67
EPORT_NAME    A2
EPORT_ID      63
STATE         connected
GW_TYPE       LEGACY
PKEY          0xffff
ALL_VLAN      yes

• vNic Support
To verify the vNIC is configured to All-VLAN mode. Run:

mlx4_vnic_info -i <interface>

Example:
# mlx4_vnic_info -i eth204
NETDEV_NAME   eth204
NETDEV_LINK   up
NETDEV_OPEN   yes
GW_TYPE       LEGACY
ALL_VLAN      yes

For further information on mlx4_vnic_info script, please see Section 3.2.5.3.3.1, 
“mlx4_vnic_info”, on page 142.

3.2.5.3.4 Advanced EoIB Settings

3.2.5.3.4.1 Module Parameters
The mlx4_vnic driver supports the following module parameters. These parameters are intended 
to enable more specific configuration of the mlx4_vnic driver to customer needs. The mlx4_vnic 
is also effected by module parameters of other modules such as set_4k_mtu of mlx4_core. This 
modules are not addressed in this section. 
The available module parameters include:
• tx_rings_num: Number of TX rings, use 0 for #cpus [default 0, max 32]
• tx_rings_len: Length of TX rings, must be power of two [default 1024, max 8K]
• rx_rings_num: Number of RX rings, use 0 for #cpus [default 0, max 32]
• rx_rings_len: Length of RX rings, must be power of two [default 2048, max 8K]
• vnic_net_admin: Network administration enabled [default 1]
• lro_num: Number of LRO sessions per ring, use 0 to disable LRO [default 32, max 32]
• eport_state_enforce: Bring vNic up only when corresponding External Port is up [default 

0]
• discovery_pkeys: Vector of up to 24 PKEYs to be used for discovery [default 0xFFFF] 

(array of int)
For all module parameters list and description, run:

mlx4_vnic_info -I
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To check the current module parameters, run:
mlx4_vnic_info -P

Default RX/TX rings number is the number of logical CPUs (threads). To set non-default values 
to module parameters, the following line should be added to modprobe configuration file (e.g. /
etc/modprobe.conf file):

options mlx4_vnic <param_name>=<value> <param_name>=<value> ...

For additional information about discovery_pkeys please refer to Section 3.2.5.3.3.5, “Discov-
ery Partitions Configuration”, on page 144

3.2.5.3.4.2 vNic Interface Naming
The mlx4_vnic driver enables the kernel to determine the name of the registered vNic. By 
default, the Linux kernel assigns each vNic interface the name eth<N>, where <N> is an incre-
mental number that keeps the interface name unique in the system. The vNic interface name may 
not remain consistent among hosts or BridgeX reboots as the vNic creation can happen in a dif-
ferent order each time. Therefore, the interface name may change because of a "first-come-first-
served" kernel policy. In automatic network administered mode, the vNic MAC address may also 
change, which makes it difficult to keep the interface configuration persistent.
To control the interface name, you can use standard Linux utilities such as IFRENAME(8), IP(8) 
or UDEV(7). For example, to change the interface eth2 name to eth.bx01.a10, run:

ifrename -i eth2 -n eth.bx01.a10

To generate a unique vNic interface name, use the mlx4_vnic_info script with the '-u' flag. The 
script will generate a new name based on the scheme:

eth<pci-id>.<ib-port-num>.<gw_port_id>.[vlan-id]

For example, if vNic eth2 resides on an InfiniBand card on the PCI BUS ID 0a:00.0 PORT #1, 
and is connected to the GW PORT ID #3 without VLAN, its unique name will be:

mlx4_vnic_info -u eth2
eth2   eth10.1.3

You can add your own custom udev rule to use the output of the script and to rename the vNic 
interfaces automatically. To create a new udev rule file under /etc/udev/rules.d/61-vnic-net.rules, 
include the line:

SUBSYSTEM=="net", PROGRAM=="/sbin/mlx4_vnic_info -u %k", NAME="%c{2+}"

UDEV service is active by default however if it is not active, run:
/sbin/udevd -d

When vNic MAC address is consistent, you can statically name each interface using the UDEV 
following rule:

SUBSYSTEM=="net", SYSFS{address}=="aa:bb:cc:dd:ee:ff", NAME="ethX"

For further information on the UDEV rules syntax, please refer to udev man pages.

3.2.5.3.4.3 Para-Virtualized vNic
EoIB driver interfaces can be also used for Linux based virtualization environment such as Xen/
KVM based Hypervisors. This section explains how to configure Para-Virtualized (PV) EoIB to 
work in such an environment.
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3.2.5.3.4.4 Driver Configuration
For PV-EoIB to work properly, the following features must be disabled in the driver:
• Large Receive Offload (LRO)
• TX completion polling
• RX fragmented buffers
To disable the features above, edit the modprobe configuration file as follow:

options mlx4_vnic lro_num=0 tx_polling=0 rx_linear=1

 For the full list of mlx4_vnic module parameters, run:
# modinfo mlx4_vnic

3.2.5.3.4.5 Network Configuration
PV-EoIB supports both L2 (bridged) and L3 (routed) network models. The 'physical' interfaces 
that can be enslaved to the Hypervisor virtual bridge are actually EoIB vNics, and they can be 
created as on an native Linux machine. PV-EoIB driver supports both host-administrated and net-
work-administrated vNics. Please refer to Section 3.2.5.3.2, “EoIB Configuration”, on page 137 
for more information on vNics configuration.
Once an EoIB vNic is enslaved to a virtual bridge, it can be used by any Guest OS that is sup-
ported by the Hypervisor. The driver will automatically manage the resources required to serve 
the Guest OS network virtual interfaces (based on their MAC address).
To see the list of MAC addresses served by an EoIB vNic, log into the Hypervisor and run the 
command:

# mlx4_vnic_info -m <interface>

The driver detects virtual interfaces MAC addresses based in their outgoing packets, so 
you may notice that the virtual MAC address is being detected by the EoIB driver only 
after the first packet is sent out by the Guest OS. Virtual resources MAC addresses 
cleanup is managed by mlx4_vnic daemon as explained in Section 3.2.5.3.4.9, 
“Resources Cleanup”, on page 149.

3.2.5.3.4.6 Multicast Configuration
Virtual machines multicast traffic over PV-EoIB is supported in promiscuous mode. Hence, all 
multicast traffic is sent over the broadcast domain, and filtered in the VM level.
• To enable promiscuous multicast, log into the BridgeX CLI and run the command:

# bxm eoib mcast promiscuous

Please refer to BridgeX CLI Guide for additional details.
• To see the multicast configuration of a vNic from the host, log into the Hypervisor and 

run:
# mlx4_vnic_info -i <interface> | grep MCAST

3.2.5.3.4.7 VLANs
Virtual LANs are supported in EoIB vNic level, where VLAN tagging/untagging is done by the 
EoIB driver. 
• To enable VLANs on top of a EoIB vNic:

a. Create a new vNic interface with the corresponding VLAN ID
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b. Enslave it to a virtual bridge to be used by the Guest OS. The VLAN tagging/untagging is trans-
parent to the Guest and managed in EoIB driver level.

The vconfig utility is not supported by EoIB driver, a new vNic instance must be cre-
ated instead. For further information, see Section 3.2.5.3.2.6, “VLAN Configura-
tion”, on page 140.

Virtual Guest Tagging (VGT) is not supported. The model explained above applies to 
Virtual Switch Tagging (VST) only.

3.2.5.3.4.8 Migration
Some Hypervisors provide the ability to migrate a virtual machine from one physical server to 
another, this feature is seamlessly supported by PV-EoIB. Any network connectivity over EoIB 
will automatically be resumed on the new physical server. The downtime that may occur during 
this process is minor.

3.2.5.3.4.9 Resources Cleanup
When a virtual interface within the Guest OS is no longer connected to an EoIB link, its MAC 
address need to be removed from the EoIB driver. The cleaning is managed by the Garbage Col-
lector (GC) service. The GC functionality is included in the mlx4_vnic daemon (python script):

# /sbin/mlx4_vnicd

• To enable/disable the mlx4_vnic daemon, 
a. Edit the /etc/infiniband/mlx4_vnic.conf file by including the line:

# mlx4_vnicd=<yes|no> [parameters]

b. Start the service mlx4_vnic_confd to read and apply the configuration:
# /etc/init.d/mlx4_vnic_confd start

• To see full list of the daemon parameters, run:
# mlx4_vnicd --help

For example, to enable mlx4_vnic daemon with GC:
# cat /etc/infiniband/mlx4_vnic.conf
  mlx4_vnicd=yes gc_enable=yes
# /etc/init.d/mlx4_vnic_confd start
  Checking configuration file:                               [  OK  ]
  Starting mlx4_vnicd (pid 30920):                           [  OK  ]

The mlx4_vnicd daemon requires xenstore or libvirt to run.

Some Hypervisors may not have enough memory for the driver domain, as a result mlx4_vnic
driver may fail to initialize or create more vNics, causing the machine to be unresponsive. 
• To avoid this behavior, you can:

a. Allocate more memory for the driver domain.
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For further information on how to increase dom0_mem, please refer to:
http://support.citrix.com/article/CTX126531

b. Lower the mlx4_vnic driver memory consumption by decreasing its RX/TX rings number and 
length,

For further information, please refer to Section 3.2.5.3.4.1, “Module Parameters”, on page 146.

3.2.6 Advanced Transport

3.2.6.1 Atomic Operations

3.2.6.1.1 Atomic Operations in mlx5 Driver
Atomic Operations in Connect-IB® (mlx5 driver) are fully supported on big-endian machines 
(e.g. PPC). Their support is limited on little-endian machines (e.g. x86)
When using ibv_exp_query_device on little-endian machines with Connect-IB® the 
attr.exp_atomic_cap is set to IBV_EXP_ATOMIC_HCA_REPLY_BE which indicates that if enabled, 
the atomic operation replied value is big-endian and contradicts the host endianness.
To enable atomic operation with this endianness contradiction use the ibv_exp_create_qp to 
create the QP and set the IBV_EXP_QP_CREATE_ATOMIC_BE_REPLY flag on exp_create_flags.

3.2.6.1.2 Enhanced Atomic Operations
ConnectX® implements a set of Extended Atomic Operations beyond those defined by the IB 
spec. Atomicity guarantees, Atomic Ack generation, ordering rules and error behavior for this set 
of extended Atomic operations is the same as that for IB standard Atomic operations (as defined 
in section 9.4.5 of the IB spec).

3.2.6.1.2.1 Masked Compare and Swap (MskCmpSwap)
The MskCmpSwap atomic operation is an extension to the CmpSwap operation defined in the IB 
spec. MskCmpSwap allows the user to select a portion of the 64 bit target data for the "compare" 
check as well as to restrict the swap to a (possibly different) portion. The pseudocode below 
describes the operation:

    | atomic_response = *va
    | if (!((compare_add ^ *va) & compare_add_mask)) then
    |     *va = (*va & ~(swap_mask)) | (swap & swap_mask)
    |
    | return atomic_response

The additional operands are carried in the Extended Transport Header. Atomic response genera-
tion and packet format for MskCmpSwap is as for standard IB Atomic operations.

3.2.6.1.2.2 Masked Fetch and Add (MFetchAdd)
The MFetchAdd Atomic operation extends the functionality of the standard IB FetchAdd by 
allowing the user to split the target into multiple fields of selectable length. The atomic add is 
done independently on each one of this fields. A bit set in the field_boundary parameter specifies 
the field boundaries. The pseudocode below describes the operation:

    | bit_adder(ci, b1, b2, *co)
    | {
    |   value = ci + b1 + b2
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    |   *co = !!(value & 2)
    |
    |   return value & 1
    | }
    |
    | #define MASK_IS_SET(mask, attr)      (!!((mask)&(attr)))
    | bit_position = 1
    | carry = 0
    | atomic_response = 0
    |
    | for i = 0 to 63
    | {
    |         if ( i != 0 )
    |                 bit_position =  bit_position << 1
    |
    |         bit_add_res = bit_adder(carry, MASK_IS_SET(*va, bit_position),
    |                                 MASK_IS_SET(compare_add, bit_position), &new_carry)
    |         if (bit_add_res)
    |                 atomic_response |= bit_position
    |
    |         carry = ((new_carry) && (!MASK_IS_SET(compare_add_mask, bit_position)))
    | }
    |
    | return atomic_response

3.2.6.2 XRC - eXtended Reliable Connected Transport Service for InfiniBand
XRC allows significant savings in the number of QPs and the associated memory resources 
required to establish all to all process connectivity in large clusters.
It significantly improves the scalability of the solution for large clusters of multicore end-nodes 
by reducing the required resources.
For further details, please refer to the "Annex A14 Supplement to InfiniBand Architecture Speci-
fication Volume 1.2.1"
A new API can be used by user space applications to work with the XRC transport. The legacy 
API is currently supported in both binary and source modes, however it is deprecated. Thus we 
recommend using the new API. 
The new verbs to be used are:
• ibv_open_xrcd/ibv_close_xrcd

• ibv_create_srq_ex

• ibv_get_srq_num

• ibv_create_qp_ex

• ibv_open_qp

Please use ibv_xsrq_pingpong for basic tests and code reference. For detailed information 
regarding the various options for these verbs, please refer to their appropriate man pages.
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3.2.6.3 Dynamically Connected Transport (DCT)
Dynamically Connected transport (DCT) service is an extension to transport services to enable a 
higher degree of scalability while maintaining high performance for sparse traffic. Utilization of 
DCT reduces the total number of QPs required system wide by having Reliable type QPs dynam-
ically connect and disconnect from any remote node. DCT connections only stay connected 
while they are active. This results in smaller memory footprint, less overhead to set connections 
and higher on-chip cache utilization and hence increased performance. DCT is supported only in 
mlx5 driver.

3.2.7 Optimized Memory Access

3.2.7.1 Contiguous Pages
Contiguous Pages improves performance by allocating user memory regions over physical con-
tiguous pages. It enables a user application to ask low level drivers to allocate contiguous mem-
ory for it as part of ibv_reg_mr.
Additional performance improvements can be reached by allocating Queue Pair (QP) and Com-
pletion Queue (CQ|) buffers to the Contiguous Pages.
To activate set the below environment variables with values of PREFER_CONTIG or CONTIG.
• For QP: MLX_QP_ALLOC_TYPE
• For CQ: MLX_CQ_ALLOC_TYPE
The following are all the possible values that can be allocated to the buffer:

Possible Value1

1. Values are NOT case sensitive.

ANON Use current pages ANON small ones.
HUGE Force huge pages.
CONTIG Force contiguous pages.
PREFER_CONTIG Try contiguous fallback to ANON small pages. (Default)
PREFER_HUGE Try huge fallback to ANON small pages.
ALL Try huge fallback to contiguous if failed fallback to ANON small pages.

Usage:
The application calls the ibv_exp_reg_mr API which turns on the 
IBV_EXP_ACCESS_ALLOCATE_MR bit and sets the input address to NULL. Upon success, the 
address field of the struct ibv_mr will hold the address to the allocated memory block. This block 
will be freed implicitly when the ibv_dereg_mr() is called.

Description
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The following are environment variables that can be used to control error cases / contiguity:

Parameters Description

MLX_MR_ALLOC_TYPE Configures the allocator type.
• ALL (Default) - Uses all possible allocator and selects 

most efficient allocator.
• ANON - Enables the usage of anonymous pages and dis-

ables the allocator
• CONTIG - Forces the usage of the contiguous pages allo-

cator. If contiguous pages are not available the alloca-
tion fails

MLX_MR_MAX_LOG2_CONTIG_BSIZE Sets the maximum contiguous block size order.
• Values: 12-23
• Default: 23

MLX_MR_MIN_LOG2_CONTIG_BSIZE Sets the minimum contiguous block size order.
• Values: 12-23
• Default: 12

3.2.7.2 Shared Memory Region

Shared Memory Region is only applicable to the mlx4 driver.

Shared Memory Region (MR) enables sharing MR among applications by implementing the 
"Register Shared MR" verb which is part of the IB spec.
Sharing MR involves the following steps:
 Step 1. Request to create a shared MR

The application sends a request via the ibv_exp_reg_mr API to create a shared MR. The 
application supplies the allowed sharing access to that MR. If the MR was created suc-
cessfully, a unique MR ID is returned as part of the struct ibv_mr which can be used by 
other applications to register with that MR.
The underlying physical pages must not be Least Recently Used (LRU) or Anonymous. 
To disable that, you need to turn on the IBV_EXP_ACCESS_ALLOCATE_MR bit as part of the 
sharing bits.

Usage:
• Turns on via the ibv_exp_reg_mr one or more of the sharing access bits. The sharing bits are part of 

the ibv_exp_reg_mr man page.
• Turns on the IBV_EXP_ACCESS_ALLOCATE_MR bit

 Step 2. Request to register to a shared MR
A new verb called ibv_exp_reg_shared_mr is added to enable sharing an MR. To use this 
verb, the application supplies the MR ID that it wants to register for and the desired access 
mode to that MR. The desired access is validated against its given permissions and upon 
successful creation, the physical pages of the original MR are shared by the new MR. 
Once the MR is shared, it can be used even if the original MR was destroyed.
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The request to share the MR can be repeated multiple times and an arbitrary number of 
Memory Regions can potentially share the same physical memory locations.

Usage:
• Uses the “handle” field that was returned from the ibv_exp_reg_mr as the mr_handle
• Supplies the desired “access mode” for that MR
• Supplies the address field which can be either NULL or any hint as the required output. The address and 

its length are returned as part of the ibv_mr struct.
To achieve high performance it is highly recommended to supply an address that is aligned as the origi-
nal memory region address. Generally, it may be an alignment to 4M address.

For further information on how to use the ibv_exp_reg_shared_mr verb, please refer to the 
ibv_exp_reg_shared_mr man page and/or to the ibv_shared_mr sample program which demon-
strates a basic usage of this verb.  
Further information on the ibv_shared_mr sample program can be found in the ibv_shared_mr 
man page.

3.2.7.3 Memory Region Re-registration
Memory Region Re-registration allows the user to change attributes of the memory region. The 
user may change the PD, access flags or the address and length of the memory region. Memory 
region supports contagious pages allocation. Consequently, it de-registers memory region fol-
lowed by register memory region. Where possible, resources are reused instead of de-allocated 
and reallocated.

Please note that the verb is implemented as an experimental verb.

int ibv_exp_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr, size_t 
length, uint64_t access, struct ibv_exp_rereg_mr_attr *attr);

@mr: The memory region to modify.
@flags: A bit-mask used to indicate which of the following properties 

of the memory region are being modified. Flags should be one 
of:
IBV_EXP_REREG_MR_CHANGE_TRANSLATION /* Change translation 
(location and length) */                             
IBV_EXP_REREG_MR_CHANGE_PD/* Change protection domain*/
IBV_EXP_REREG_MR_CHANGE_ACCESS/* Change access flags*/

@pd: If IBV_EXP_REREG_MR_CHANGE_PD is set in flags, this field spec-
ifies the new protection domain to associated with the memory 
region, otherwise, this parameter is ignored.

@addr: If IBV_EXP_REREG_MR_CHANGE_TRANSLATION is set in flags, this 
field specifies the start of the virtual address to use in the 
new translation, otherwise, this parameter is ignored.

@length: If IBV_EXP_REREG_MR_CHANGE_TRANSLATION is set in flags, this 
field specifies the length of the virtual address to use in the 
new translation, otherwise, this parameter is ignored.
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ibv_exp_rereg_mr returns 0 on success, or the value of an errno on failure (which indicates the 
error reason). In case of an error, the MR is in undefined state. The user needs to call 
ibv_dereg_mr in order to release it.
Please note that if the MR (Memory Region) is created as a Shared MR and a translation is 
requested, after the call, the MR is no longer a shared MR. Moreover, Re-registration of MRs that 
uses Mellanox PeerDirect™ technology are not supported.

3.2.7.4 Memory Window
Memory Window allows the application to have a more flexible control over remote access to its 
memory. It is available only on physical functions / native machines The two types of Memory 
Windows supported are: type 1 and type 2B.
Memory Windows are intended for situations where the application wants to:
• grant and revoke remote access rights to a registered region in a dynamic fashion with 

less of a performance penalty
• grant different remote access rights to different remote agents and/or grant those rights 

over different ranges within registered region
For further information, please refer to the InfiniBand specification document.

Memory Windows API cannot co-work with peer memory clients (PeerDirect).

3.2.7.5 User-Mode Memory Registration (UMR)

User-mode Memory Registration (UMR) is currently at beta level.

User-mode Memory Registration (UMR) is a fast registration mode which uses send queue. The 
UMR support enables the usage of RDMA operations and scatters the data at the remote side 
through the definition of appropriate memory keys on the remote side. 
UMR enables the user to:
• Create indirect memory keys from previously registered memory regions, including cre-

ation of KLM's from previous KLM's. There are not data alignment or length restrictions 
associated with the memory regions used to define the new KLM's.

@access: If IBV_EXP_REREG_MR_CHANGE_ACCESS is set in flags, this field 
specifies the new memory access rights, otherwise, this param-
eter is ignored. Could be one of the following:
IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE   
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_ALLOCATE_MR      /* Let the library allocate the 
memory for * the user, tries to get contiguous pages */                        

@attr: Future extensions
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• Create memory regions, which support the definition of regular non-contiguous memory 
regions.

3.2.7.6 On-Demand-Paging (ODP)
On-Demand-Paging (ODP) is a technique to alleviate much of the shortcomings of memory 
registration. Applications no longer need to pin down the underlying physical pages of the 
address space, and track the validity of the mappings. Rather, the HCA requests the latest trans-
lations from the OS when pages are not present, and the OS invalidates translations which are 
no longer valid due to either non-present pages or mapping changes. ODP does not support the 
following features:
• Memory windows
• Indirect MKEY
• Contiguous pages

ODP can be further divided into 2 subclasses: Explicit and Implicit ODP.
• Explicit ODP

In Explicit ODP, applications still register memory buffers for communication, but this opera-
tion is used to define access control for IO rather than pin-down the pages. ODP Memory 
Region (MR) does not need to have valid mappings at registration time. 

• Implicit ODP
In Implicit ODP, applications are provided with a special memory key that represents their 
complete address space. This all IO accesses referencing this key (subject to the access rights 
associated with the key) does not need to register any virtual address range.

3.2.7.6.1 Query Capabilities
On-Demand Paging is available if both the hardware and the kernel support it. To verify whether 
ODP is supported, run ibv_exp_query_device:

struct ibv_exp_device_attr dattr;
dattr.comp_mask = IBV_EXP_DEVICE_ATTR_ODP | IBV_EXP_DEVICE_ATTR_EXP_CAP_FLAGS;
ret = ibv_exp_query_device(context, &dattr);
if (dattr.exp_device_cap_flags  & IBV_EXP_DEVICE_ODP)
          //On-Demand Paging is supported.

Each transport has a capability field in the dattr.odp_caps structure that indicates which opera-
tions are supported by the ODP MR:

struct ibv_exp_odp_caps {
        uint64_t        general_odp_caps;
        struct {
                uint32_t        rc_odp_caps;
                uint32_t        uc_odp_caps;
                uint32_t        ud_odp_caps;
                uint32_t        dc_odp_caps;
                uint32_t        xrc_odp_caps;
                uint32_t        raw_eth_odp_caps;
        } per_transport_caps;
};
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To check which operations are supported for a given transport, the capabilities field need to be 
masked with one of the following masks:

enum ibv_odp_transport_cap_bits {
        IBV_EXP_ODP_SUPPORT_SEND     = 1 << 0,
        IBV_EXP_ODP_SUPPORT_RECV     = 1 << 1,
        IBV_EXP_ODP_SUPPORT_WRITE    = 1 << 2,
        IBV_EXP_ODP_SUPPORT_READ     = 1 << 3,
        IBV_EXP_ODP_SUPPORT_ATOMIC   = 1 << 4,
        IBV_EXP_ODP_SUPPORT_SRQ_RECV = 1 << 5,
};

For example to check if RC supports send:
If (dattr.odp_caps.per_transport_caps.rc_odp_caps & IBV_EXP_ODP_SUPPORT_SEND)

//RC supports send operations with ODP MR

For further information, please refer to the ibv_exp_query_device manual page.

3.2.7.6.2 Registering ODP Explicit MR
ODP Explicit MR is registered after allocating the necessary resources (e.g., PD, buffer):

struct ibv_exp_reg_mr_in in;
struct ibv_mr *mr;
in.pd = pd;
in.addr = buf;
in.length = size;
in.exp_access = IBV_EXP_ACCESS_ON_DEMAND| … ;
in.comp_mask = 0;
mr = ibv_exp_reg_mr(&in);

Please be aware that the exp_access differs from one operation to the other, but the 
IBV_EXP_ACCESS_ON_DEMAND is set for all ODP MRs.
For further information, please refer to the ibv_exp_reg_mr manual page.

3.2.7.6.3 Registering ODP Implicit MR
Registering an Implicit ODP MR provides you with an implicit lkey that represents the complete 
address space. Implicit ODP MR is limited to local access permissions (local read or write). It 
only has a valid lkey, whereas its rkey is invalid. The size of operations that can use this lkey is 
limited to 128MB.
To register an Implicit ODP MR, in addition to the IBV_EXP_ACCESS_ON_DEMAND access flag, use 
in->addr = 0 and in->length = IBV_EXP_IMPLICIT_MR_SIZE.
For further information, please refer to the ibv_exp_reg_mr manual page.

3.2.7.6.4 De-registering ODP MR
ODP MR is deregistered the same way a regular MR is deregistered:

ibv_dereg_mr(mr);

3.2.7.6.5 Pre-fetching Verb
The driver can pre-fetch a given range of pages and map them for access from the HCA. The pre-
fetched verb is applicable for ODP MRs only, and it is done on a best effort basis, and may 
silently ignore errors.
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Example:
struct ibv_exp_prefetch_attr prefetch_attr;
prefetch_attr.flags = IBV_EXP_PREFETCH_WRITE_ACCESS;
prefetch_attr.addr = addr;
prefetch_attr.length = length;
prefetch_attr.comp_mask = 0;
ibv_exp_prefetch_mr(mr, &prefetch_attr);

For further information, please refer to the ibv_exp_prefetch_mr manual page.

3.2.7.6.6 ODP Statistics
To aid in debugging and performance measurements and tuning, ODP support includes an exten-
sive set of statistics. The statistics are divided into 2 sets: standard statistics and debug statistics. 
Both sets are maintained on a per-device basis and report the total number of events since the 
device was registered.
The standard statistics are reported as sysfs entries with the following format:

/sys/class/infiniband_verbs/uverbs[0/1]/
        invalidations_faults_contentions
        num_invalidation_pages
        num_invalidations
        num_page_fault_pages
        num_page_faults
        num_prefetchs_handled
        num_prefetch_pages

Counter Name Description

invalidations_faults_contentions Number of times that page fault events were dropped or 
prefetch operations were restarted due to OS page invalida-
tions.

num_invalidation_pages Total number of pages invalidated during all invalidation 
events.

num_invalidations Number of invalidation events.
num_page_fault_pages Total number of pages faulted in by page fault events.
num_page_faults Number of page fault events.
num_prefetches_handled Number of prefetch verb calls that were completed success-

fully.
num_prefetch_pages Total number of pages that were prefetched by the prefetch 

verb.

The debug statistics are reported by debugfs entries with the following format:
/sys/kernel/debug/mlx5/<pci-dev-id>/odp_stats/
        num_failed_resolutions
        num_mrs_not_found
        num_odp_mr_pages
        num_odp_mrs
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Counter Name Description

num_failed_resolutions Number of failed page faults that could not be resolved due to non-
existing mappings in the OS.

num_mrs_not_found Number of faults that specified a non-existing ODP MR.
num_odp_mr_pages Total size in pages of current ODP MRs.
num_odp_mrs Number of current ODP MRs.

3.2.7.7 Inline-Receive
When Inline-Receive is active, the HCA may write received data in to the receive WQE or CQE. 
Using Inline-Receive saves PCIe read transaction since the HCA does not need to read the  
scatter list, therefore it improves performance in case of short receive-messages.
On poll CQ, the driver copies the received data from WQE/CQE to the user's buffers. Therefore, 
apart from querying Inline-Receive capability and Inline-Receive activation the feature is trans-
parent to user application.

When Inline-Receive is active, user application must provide a valid virtual address for 
the receive buffers to allow the driver moving the inline-received message to these buf-
fers. The validity of these addresses is not checked therefore the result of providing non-
valid virtual addresses is unexpected.

Connect-IB® supports Inline-Receive on both the requestor and the responder sides. Since data 
is copied at the poll CQ verb, Inline-Receive on the requestor side is possible only if the user 
chooses IB(V)_SIGNAL_ALL_WR.

3.2.7.7.1 Querying Inline-Receive Capability
User application can use the ibv_exp_query_device function to get the maximum possible 
Inline-Receive size. To get the size, the application needs to set the  
IBV_EXP_DEVICE_ATTR_INLINE_RECV_SZ bit in the ibv_exp_device_attr comp_mask.

3.2.7.7.2 Activating Inline-Receive
To activate the Inline-Receive, you need to set the required message size in the max_inl_recv
field in the ibv_exp_qp_init_attr struct when calling ibv_exp_create_qp function. The 
value returned by the same field is the actual Inline-Receive size applied.

Setting the message size may affect the WQE/CQE size.

3.2.7.7.3 Query Capabilities
Memory Windows are available if and only the hardware supports it. To verify whether Memory 
Windows are available, run ibv_exp_query_device.
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For example:
truct ibv_exp_device_attr device_attr = {.comp_mask = IBV_EXP_DEVICE_ATTR_RESERVED - 
1};
ibv_exp_query_device(context, & device_attr);
if (device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_MEM_WINDOW ||
                 device_attr.exp_device_cap_flags & IBV_EXP_DEVICE_MW_TYPE_2B) {
/* Memory window is supported */

3.2.7.7.4 Allocating Memory Window
Allocating memory window is done by calling the ibv_alloc_mw verb.

type_mw = IBV_MW_TYPE_2/ IBV_MW_TYPE_1
mw = ibv_alloc_mw(pd, type_mw);

3.2.7.7.5 Binding Memory Windows
After allocated, memory window should be bound to a registered memory region. Memory 
Region should have been registered using the IBV_EXP_ACCESS_MW_BIND access flag.
• Binding Memory Window type 1 is done via the ibv_exp_bind_mw verb.

struct ibv_exp_mw_bind mw_bind = { .comp_mask = IBV_EXP_BIND_MW_RESERVED - 1 };
ret = ibv_exp_bind_mw(qp, mw, &mw_bind);

• Binding memory window type 2B is done via the ibv_exp_post_send verb and a spe-
cific Work Request (WR) with opcode = IBV_EXP_WR_BIND_MW

Prior to binding, please make sure to update the existing rkey.
ibv_inc_rkey(mw->rkey)

 

3.2.7.7.6 Invalidating Memory Window
Before rebinding Memory Window type 2, it must be invalidated using the ibv_exp_post_send
verb and a specific WR with opcode = IBV_EXP_WR_LOCAL_INV.

3.2.7.7.7 Deallocating Memory Window
Deallocating memory window is done using the ibv_dealloc_mw verb.

ibv_dealloc_mw(mw);

3.2.8 PeerDirect
PeerDirect uses an API between IB CORE and peer memory clients, (e.g. GPU cards) to provide 
access to an HCA to read/write peer memory for data buffers. As a result, it allows RDMA-based 
(over InfiniBand/RoCE) application to use peer device computing power, and RDMA intercon-
nect at the same time without copying the data between the P2P devices. 
For example, PeerDirect is being used for GPUDirect RDMA.
Detailed description for that API exists under MLNX OFED installation, please see  
docs/readme_and_user_manual/PEER_MEMORY_API.txt
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3.3 Storage Protocols

3.3.1 SCSI RDMA Protocol (SRP)
As described in Section 3.3.1, the SCSI RDMA Protocol (SRP) is designed to take full advantage 
of the protocol off-load and RDMA features provided by the InfiniBand architecture. SRP allows 
a large body of SCSI software to be readily used on InfiniBand architecture. The SRP Initiator 
controls the connection to an SRP Target in order to provide access to remote storage devices 
across an InfiniBand fabric. The kSRP Target resides in an IO unit and provides storage services.
Section 3.3.1.1 describes the SRP Initiator included in Mellanox OFED for Linux. This package, 
however, does not include an SRP Target.

3.3.1.1 SRP Initiator
This SRP Initiator is based on open source from OpenFabrics (www.openfabrics.org) that imple-
ments the SCSI RDMA Protocol-2 (SRP-2). SRP-2 is described in Document # T10/1524-D 
available from http://www.t10.org.
The SRP Initiator supports
• Basic SCSI Primary Commands -3 (SPC-3)

(www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf)
• Basic SCSI Block Commands -2 (SBC-2)

(www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf)
• Basic functionality, task management and limited error handling

Loading SRP Initiator
To load the SRP module, either execute the “modprobe ib_srp” command after the OFED driver 
is up, or change the value of SRP_LOAD in /etc/infiniband/openib.conf to “yes”.

For the changes to take effect, run: /etc/init.d/openibd restart

When loading the ib_srp module, it is possible to set the module parameter 
srp_sg_tablesize. This is the maximum number of gather/scatter entries per I/O 
(default: 12).

3.3.1.1.1 SRP Module Parameters
When loading the SRP module, the following parameters can be set (viewable by the "modinfo 
ib_srp" command):

cmd_sg_entries Default number of gather/scatter entries in the SRP command (default is 
12, max 255)

allow_ext_sg Default behavior when there are more than cmd_sg_entries S/G entries 
after mapping; fails the request when false (default false)

topspin_workarounds Enable workarounds for Topspin/Cisco SRP target bugs
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Constraints between parameters:
• dev_loss_tmo, fast_io_fail_tmo, reconnect_delay cannot be all disabled or nega-

tive values.
• reconnect_delay must be positive number.
• fast_io_fail_tmo must be smaller than SCSI block device timeout.
• fast_io_fail_tmo must be smaller than dev_loss_tmo.

3.3.1.1.2 SRP Remote Ports Parameters
Several SRP remote ports parameters are modifiable online on existing connection.
 To modify dev_loss_tmo to 600 seconds:

echo 600 > /sys/class/srp_remote_ports/port-xxx/dev_loss_tmo

 To modify fast_io_fail_tmo to 15 seconds:
echo 15 > /sys/class/srp_remote_ports/port-xxx/fast_io_fail_tmo

 To modify reconnect_delay to 10 seconds:
echo 20 > /sys/class/srp_remote_ports/port-xxx/reconnect_delay

Manually Establishing an SRP Connection
The following steps describe how to manually load an SRP connection between the Initiator and 
an SRP Target. Section , “Automatic Discovery and Connection to Targets”, on page 167
explains how to do this automatically.
• Make sure that the ib_srp module is loaded, the SRP Initiator is reachable by the SRP 

Target, and that an SM is running.

reconnect_delay Time between successive reconnect attempts. Time between successive 
reconnect attempts of SRP initiator to a disconnected target until 
dev_loss_tmo timer expires (if enabled), after that the SCSI target will 
be removed.

fast_io_fail_tmo Number of seconds between the observation of a transport layer error 
and failing all I/O. Increasing this timeout allows more tolerance to 
transport errors, however, doing so increases the total failover time in 
case of serious transport failure.
Note: fast_io_fail_tmo value must be smaller than the value of 
reconnect_delay.

dev_loss_tmo Maximum number of seconds that the SRP transport should insulate 
transport layer errors. After this time has been exceeded the SCSI target 
is removed. Normally it is advised to set this to -1 (disabled) which will 
never remove the scsi_host. In deployments where different SRP targets 
are connected and disconnected frequently, it may be required to enable 
this timeout in order to clean old scsi_hosts representing targets that no 
longer exists.
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• To establish a connection with an SRP Target and create an SRP (SCSI) device for that 
target under /dev, use the following command:

echo -n id_ext=[GUID value],ioc_guid=[GUID value],dgid=[port GID value],\
pkey=ffff,service_id=[service[0] value] > \
/sys/class/infiniband_srp/srp-mlx[hca number]-[port number]/add_target

See Section , “SRP Tools - ibsrpdm, srp_daemon and srpd Service Script”, on page 164 for 
instructions on how the parameters in this echo command may be obtained.
Notes:
• Execution of the above “echo” command may take some time
• The SM must be running while the command executes
• It is possible to include additional parameters in the echo command:

• max_cmd_per_lun - Default: 62
• max_sect (short for max_sectors) - sets the request size of a command
• io_class - Default: 0x100 as in rev 16A of the specification (In rev 10 the default was 0xff00)
• tl_retry_count - a number in the range 2..7 specifying the IB RC retry count. Default: 2
• comp_vector, a number in the range 0..n-1 specifying the MSI-X completion vector. Some HCA's 

allocate multiple (n) MSI-X vectors per HCA port. If the IRQ affinity masks of these interrupts have 
been configured such that each MSI-X interrupt is handled by a different CPU then the comp_vector 
parameter can be used to spread the SRP completion workload over multiple CPU's.

• cmd_sg_entries, a number in the range 1..255 that specifies the maximum number of data buffer 
descriptors stored in the SRP_CMD information unit itself. With allow_ext_sg=0 the parameter 
cmd_sg_entries defines the maximum S/G list length for a single SRP_CMD, and commands whose 
S/G list length exceeds this limit after S/G list collapsing will fail.

• initiator_ext - Please refer to Section 9 (Multiple Connections...)

• To list the new SCSI devices that have been added by the echo command, you may use 
either of the following two methods:
• Execute “fdisk -l”. This command lists all devices; the new devices are included in this 

listing.
• Execute “dmesg” or look at /var/log/messages to find messages with the names of the 

new devices.

3.3.1.1.3 SRP sysfs Parameters
Interface for making ib_srp connect to a new target. One can request ib_srp to connect to a new 
target by writing a comma-separated list of login parameters to this sysfs attribute. The supported 
parameters are:

id_ext A 16-digit hexadecimal number specifying the eight byte identifier 
extension in the 16-byte SRP target port identifier. The target port iden-
tifier is sent by ib_srp to the target in the SRP_LOGIN_REQ request.

ioc_guid A 16-digit hexadecimal number specifying the eight byte I/O controller 
GUID portion of the 16-byte target port identifier.

dgid A 32-digit hexadecimal number specifying the destination GID.
pkey A four-digit hexadecimal number specifying the InfiniBand partition 

key.
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SRP Tools - ibsrpdm, srp_daemon and srpd Service Script
To assist in performing the steps in Section 6, the OFED distribution provides two utilities,  
ibsrpdm and srp_daemon, which
• Detect targets on the fabric reachable by the Initiator (for Step 1)
• Output target attributes in a format suitable for use in the above “echo” command (Step 

2)

service_id A 16-digit hexadecimal number specifying the InfiniBand service ID 
used to establish communication with the SRP target. How to find out 
the value of the service ID is specified in the documentation of the SRP 
target.

max_sect A decimal number specifying the maximum number of 512-byte sectors 
to be transferred via a single SCSI command.

max_cmd_per_lun A decimal number specifying the maximum number of outstanding 
commands for a single LUN.

io_class A hexadecimal number specifying the SRP I/O class. Must be either 
0xff00 (rev 10) or 0x0100 (rev 16a). The I/O class defines the format of 
the SRP initiator and target port identifiers.

initiator_ext A 16-digit hexadecimal number specifying the identifier extension por-
tion of the SRP initiator port identifier. This data is sent by the initiator 
to the target in the SRP_LOGIN_REQ request.

cmd_sg_entries A number in the range 1..255 that specifies the maximum number of 
data buffer descriptors stored in the SRP_CMD information unit itself. 
With allow_ext_sg=0 the parameter cmd_sg_entries defines the maxi-
mum S/G list length for a single SRP_CMD, and commands whose S/G 
list length exceeds this limit after S/G list collapsing will fail.

allow_ext_sg Whether ib_srp is allowed to include a partial memory descriptor list in 
an SRP_CMD instead of the entire list. If a partial memory descriptor 
list has been included in an SRP_CMD the remaining memory descrip-
tors are communicated from initiator to target via an additional RDMA 
transfer. Setting allow_ext_sg to 1 increases the maximum amount of 
data that can be transferred between initiator and target via a single 
SCSI command. Since not all SRP target implementations support par-
tial memory descriptor lists the default value for this option is 0.

sg_tablesize A number in the range 1..2048 specifying the maximum S/G list length 
the SCSI layer is allowed to pass to ib_srp. Specifying a value that 
exceeds cmd_sg_entries is only safe with partial memory descriptor list 
support enabled (allow_ext_sg=1).

comp_vector A number in the range 0..n-1 specifying the MSI-X completion vector. 
Some HCA's allocate multiple (n) MSI-X vectors per HCA port. If the 
IRQ affinity masks of these interrupts have been configured such that 
each MSI-X interrupt is handled by a different CPU then the 
comp_vector parameter can be used to spread the SRP completion 
workload over multiple CPU's.

tl_retry_count A number in the range 2..7 specifying the IB RC retry count.
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• A service script srpd which may be started at stack startup
The utilities can be found under /usr/sbin/, and are part of the srptools RPM that may be 
installed using the Mellanox OFED installation. Detailed information regarding the various 
options for these utilities are provided by their man pages.
Below, several usage scenarios for these utilities are presented.

3.3.1.1.4 ibsrpdm
ibsrpdm is using for the following tasks:
1. Detecting reachable targets

a. To detect all targets reachable by the SRP initiator via the default umad device (/sys/class/infiniband_mad/
umad0), execute the following command:

 ibsrpdm

This command will output information on each SRP Target detected, in human-readable 
form.
Sample output:

     IO Unit Info:
          port LID:        0103
          port GID:        fe800000000000000002c90200402bd5
          change ID:       0002
          max controllers: 0x10
       controller[  1]
           GUID:      0002c90200402bd4
           vendor ID: 0002c9
           device ID: 005a44
           IO class : 0100
           ID:        LSI Storage Systems SRP Driver 200400a0b81146a1
           service entries: 1
           service[  0]: 200400a0b81146a1 / SRP.T10:200400A0B81146A1

b. To detect all the SRP Targets reachable by the SRP Initiator via another umad device, use the following 
command:

ibsrpdm -d <umad device>

2. Assistance in creating an SRP connection
a. To generate output suitable for utilization in the “echo” command of Section , “Manually Establishing an 

SRP Connection”, on page 162, add the  
‘-c’ option to ibsrpdm:

ibsrpdm -c

Sample output:
id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id=200400a0b81146a1
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b. To establish a connection with an SRP Target using the output from the ‘ibsrpdm -c’ example above, 
execute the following command:

echo -n id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id=200400a0b81146a1 > /sys/
class/infiniband_srp/srp-mlx4_0-1/add_target

The SRP connection should now be up; the newly created SCSI devices should appear in the listing 
obtained from the ‘fdisk -l’ command.

3. Discover reachable SRP Targets given an InfiniBand HCA name and port, rather than by just 
runing /sys/class/infiniband_mad/umad<N> where <N> is a digit

3.3.1.1.5 srpd
The srpd service script allows automatic activation and termination of the srp_daemon utility on 
all system live InfiniBand ports.

3.3.1.1.6 srp_daemon
The srp_daemon utility is based on ibsrpdm and extends its functionality. In addition to the ibsr-
pdm functionality described above, srp_daemon can also
• Establish an SRP connection by itself (without the need to issue the “echo” command 

described in Section , “Manually Establishing an SRP Connection”, on page 162)
• Continue running in background, detecting new targets and establishing SRP connec-

tions with them (daemon mode)
• Discover reachable SRP Targets given an infiniband HCA name and port, rather than 

just by 
/dev/umad<N> where <N> is a digit

• Enable High Availability operation (together with Device-Mapper Multipath)
• Have a configuration file that determines the targets to connect to
1. srp_daemon commands equivalent to ibsrpdm:

"srp_daemon -a -o"    is equivalent to "ibsrpdm"
"srp_daemon -c -a -o" is equivalent to "ibsrpdm -c"

These srp_daemon commands can behave differently than the equivalent
ibsrpdm command when /etc/srp_daemon.conf is not empty.

2. srp_daemon extensions to ibsrpdm
• To discover SRP Targets reachable from the HCA device <InfiniBand HCA name> and 

the port <port num>, (and to generate output suitable for 'echo',) you may execute:
host1# srp_daemon -c -a -o -i <InfiniBand HCA name> -p <port number>

To obtain the list of InfiniBand HCA device names, you can either use the ibstat tool or 
run ‘ls /sys/class/infiniband’.

• To both discover the SRP Targets and establish connections with them, just add the -e 
option to the above command.
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• Executing srp_daemon over a port without the -a option will only display the reachable 
targets via the port and to which the initiator is not connected. If executing with the -e 
option it is better to omit -a.

• It is recommended to use the -n option. This option adds the initiator_ext to the connecting 
string. (See Section  for more details).

• srp_daemon has a configuration file that can be set, where the default is /etc/
srp_daemon.conf. Use the -f to supply a different configuration file that configures the tar-
gets srp_daemon is allowed to connect to. The configuration file can also be used to set 
values for additional parameters (e.g., max_cmd_per_lun, max_sect).

• A continuous background (daemon) operation, providing an automatic ongoing detection 
and connection capability. See Section .

Automatic Discovery and Connection to Targets
• Make sure that the ib_srp module is loaded, the SRP Initiator can reach an SRP Target, 

and that an SM is running.
• To connect to all the existing Targets in the fabric, run “srp_daemon -e -o”. This utility 

will scan the fabric once, connect to every Target it detects, and then exit.

srp_daemon will follow the configuration it finds in /etc/srp_daemon.conf. Thus, it 
will ignore a target that is disallowed in the configuration file.

• To connect to all the existing Targets in the fabric and to connect to new targets that will 
join the fabric, execute srp_daemon -e. This utility continues to execute until it is either 
killed by the user or encounters connection errors (such as no SM in the fabric).

• To execute SRP daemon as a daemon on all the ports:
• srp_daemon.sh (found under /usr/sbin/). srp_daemon.sh sends its log to /var/log/

srp_daemon.log.
• Start the srpd service script, run service srpd start

• It is possible to configure this script to execute automatically when the InfiniBand driver 
starts by changing the value of SRP_DAEMON_ENABLE in /etc/infiniband/ 
openib.conf to “yes”. However, this option also enables SRP High Availability that has 
some more features – see Section , “High Availability (HA)”, on page 168).
For the changes in openib.conf to take effect, run: 
/etc/init.d/openibd restart

Multiple Connections from Initiator InfiniBand Port to the Target
Some system configurations may need multiple SRP connections from the SRP Initiator to the 
same SRP Target: to the same Target IB port, or to different IB ports on the same Target HCA. 
In case of a single Target IB port, i.e., SRP connections use the same path, the configuration is 
enabled using a different initiator_ext value for each SRP connection. The initiator_ext value is a 
16-hexadecimal-digit value specified in the connection command. 
Also in case of two physical connections (i.e., network paths) from a single initiator IB port to 
two different IB ports on the same Target HCA, there is need for a different initiator_ext value on 
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each path. The conventions is to use the Target port GUID as the initiator_ext value for the rele-
vant path.
If you use srp_daemon with -n flag, it automatically assigns initiator_ext values according to this 
convention. For example:

id_ext=200500A0B81146A1,ioc_guid=0002c90200402bec,\ 
dgid=fe800000000000000002c90200402bed,pkey=ffff,\ 
service_id=200500a0b81146a1,initiator_ext=ed2b400002c90200

Notes:
1. It is recommended to use the -n flag for all srp_daemon invocations.
2. ibsrpdm does not have a corresponding option.
3. srp_daemon.sh always uses the -n option (whether invoked manually by the user, or automat-

ically at startup by setting SRP_DAEMON_ENABLE to yes).

High Availability (HA)
High Availability works using the Device-Mapper (DM) multipath and the SRP daemon. Each 
initiator is connected to the same target from several ports/HCAs. The DM multipath is responsi-
ble for joining together different paths to the same target and for fail-over between paths when 
one of them goes offline. Multipath will be executed on newly joined SCSI devices.
Each initiator should execute several instances of the SRP daemon, one for each port. At startup, 
each SRP daemon detects the SRP Targets in the fabric and sends requests to the ib_srp module 
to connect to each of them. These SRP daemons also detect targets that subsequently join the fab-
ric, and send the ib_srp module requests to connect to them as well.

3.3.1.1.7 Operation
When a path (from port1) to a target fails, the ib_srp module starts an error recovery process. If 
this process gets to the reset_host stage and there is no path to the target from this port, ib_srp 
will remove this scsi_host. After the scsi_host is removed, multipath switches to another path to 
this target (from another port/HCA).
When the failed path recovers, it will be detected by the SRP daemon. The SRP daemon will then 
request ib_srp to connect to this target. Once the connection is up, there will be a new scsi_host 
for this target. Multipath will be executed on the devices of this host, returning to the original 
state (prior to the failed path).

3.3.1.1.8 Manual Activation of High Availability
Initialization: (Execute after each boot of the driver)
1. Execute modprobe dm-multipath
2. Execute modprobe ib-srp
3. Make sure you have created file /etc/udev/rules.d/91-srp.rules as described above.
4. Execute for each port and each HCA:

srp_daemon -c -e -R 300 -i <InfiniBand HCA name> -p <port number>

This step can be performed by executing srp_daemon.sh, which sends its log to /var/log/
srp_daemon.log.

Now it is possible to access the SRP LUNs on /dev/mapper/.
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It is possible for regular (non-SRP) LUNs to also be present; the SRP LUNs may be 
identified by their names. You can configure the /etc/multipath.conf file to change 
multipath behavior.

It is also possible that the SRP LUNs will not appear under /dev/mapper/. This can 
occur if the SRP LUNs are in the black-list of multipath. Edit the ‘blacklist’ section in 
/etc/multipath.conf and make sure the SRP LUNs are not black-listed.

3.3.1.1.9 Automatic Activation of High Availability
• Set the value of SRP_DAEMON_ENABLE in /etc/infiniband/openib.conf to 

"yes".
For the changes in openib.conf to take effect, run: 
/etc/init.d/openibd restart

• Start srpd service, run: service srpd start
• From the next loading of the driver it will be possible to access the SRP LUNs on /dev/

mapper/

It is possible that regular (not SRP) LUNs may also be present; the SRP LUNs may be 
identified by their name.

• It is possible to see the output of the SRP daemon in /var/log/srp_daemon.log

Shutting Down SRP
SRP can be shutdown by using “rmmod ib_srp”, or by stopping the OFED driver (“/etc/
init.d/openibd stop”), or as a by-product of a complete system shutdown.
Prior to shutting down SRP, remove all references to it. The actions you need to take depend on 
the way SRP was loaded. There are three cases:
1. Without High Availability

When working without High Availability, you should unmount the SRP partitions that were 
mounted prior to shutting down SRP.

2. After Manual Activation of High Availability
If you manually activated SRP High Availability, perform the following steps:

a. Unmount all SRP partitions that were mounted.
b. Stop service srpd (Kill the SRP daemon instances).

c. Make sure there are no multipath instances running. If there are multiple instances, wait for them to end or 
kill them.

d. Run:  multipath -F

3. After Automatic Activation of High Availability
If SRP High Availability was automatically activated, SRP shutdown must be part of the driver 
shutdown ("/etc/init.d/openibd stop") which performs Steps 2-4 of case b above. However, you 
still have to unmount all SRP partitions that were mounted before driver shutdown.
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3.3.2 iSCSI Extensions for RDMA (iSER)
iSCSI Extensions for RDMA (iSER) extends the iSCSI protocol to RDMA. It permits data to be 
transferred directly into and out of SCSI buffers without intermediate data copies.

3.3.2.1 iSER Initiator

Setting the iSER target is out of scope of this manual. For guidelines of how to do so, 
please refer to the relevant target documentation (e.g. stgt, clitarget).

The iSER initiator is controlled through the iSCSI interface available from the iscsi-initiator-utils 
package. 
Make sure iSCSI is enabled and properly configured on your system before proceeding with 
iSER. Additionally, make sure you have RDMA connectivity between the initiator and the target.

rping -s [-vVd] [-S size] [-C count] [-a addr] [-p port]

Targets settings such as timeouts and retries are set the same as any other iSCSI targets.

If targets are set to auto connect on boot, and targets are unreachable, it may take a long 
time to continue the boot process if timeouts and max retries are set too high.

Example for discovering and connecting targets over iSER:
iscsiadm -m discovery -o new -o old -t st -I iser -p <ip:port> -l

iSER also supports RoCE without any additional configuration required. To bond the RoCE 
interfaces, set the fail_over_mac option in the bonding driver (see Section 3.2.5.1.5, “Bond-
ing IPoIB”, on page 131).
For further information, please refer to Mellanox Community (http://community.mellanox.com/
community/solutions/content --> iSER).

3.3.3 Lustre
Lustre Compilation for MLNX_OFED:

This procedure applies to RHEL/SLES OSs supported by Lustre. For further information, 
please refer to Lustre Release Notes.

 To compile Lustre version 2.4.0 and higher:
$ ./configure --with-o2ib=/usr/src/ofa_kernel/default/
$ make rpms

 To compile older Lustre versions:
$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include /usr/src/
ofa_kernel/default/include/linux/compat-2.6.h" ./configure --with-o2ib=/usr/src/
ofa_kernel/default/
$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include /usr/src/
ofa_kernel/default/include/linux/compat-2.6.h" make rpms
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3.4 Virtualization

3.4.1 Single Root IO Virtualization (SR-IOV)
Single Root IO Virtualization (SR-IOV) is a technology that allows a physical PCIe device to 
present itself multiple times through the PCIe bus. This technology enables multiple virtual 
instances of the device with separate resources. Mellanox adapters are capable of exposing in 
ConnectX®-3 adapter cards up to 126 virtual instances called Virtual Functions (VFs). These vir-
tual functions can then be provisioned separately. Each VF can be seen as an addition device con-
nected to the Physical Function. It shares the same resources with the Physical Function, and its 
number of ports equals those of the Physical Function. 
SR-IOV is commonly used in conjunction with an SR-IOV enabled hypervisor to provide virtual 
machines direct hardware access to network resources hence increasing its performance. 
In this chapter we will demonstrate setup and configuration of SR-IOV in a Red Hat Linux envi-
ronment using Mellanox ConnectX® VPI adapter cards family. 

3.4.1.1 System Requirements
To set up an SR-IOV environment, the following is required: 
• MLNX_OFED Driver
• A server/blade with an SR-IOV-capable motherboard BIOS
• Hypervisor that supports SR-IOV such as: Red Hat Enterprise Linux Server Version 6.*
• Mellanox ConnectX® VPI Adapter Card family with SR-IOV capability 

3.4.1.2 Setting Up SR-IOV
Depending on your system, perform the steps below to set up your BIOS. The figures used in this 
section are for illustration purposes only. For further information, please refer to the appropriate 
BIOS User Manual: 
 Step 1. Enable "SR-IOV" in the system BIOS.
Mellanox Technologies 171



Features Overview and ConfigurationRev 2.3-1.0.1
 Step 2. Enable "Intel Virtualization Technology".

 Step 3. Install a hypervisor that supports SR-IOV.
 Step 4. Depending on your system, update the /boot/grub/grub.conf file to include a similar com-

mand line load parameter for the Linux kernel. 
For example, to Intel systems, add:

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.32-36.x86-645)
        root (hd0,0)
        kernel /vmlinuz-2.6.32-36.x86-64 ro root=/dev/VolGroup00/LogVol00 rhgb quiet 

        intel_iommu=on1

1. Please make sure the parameter "intel_iommu=on" exists when updating the /boot/grub/grub.conf 
file, otherwise SR-IOV cannot be loaded.

        initrd /initrd-2.6.32-36.x86-64.img

 Step 5. Install the MLNX_OFED driver for Linux that supports SR-IOV. 
SR-IOV can be enabled and managed by using one of the following methods:
• Run the mlxconfig tool and set the SRIOV_EN parameter to “1” without re-burning the firmware

SRIOV_EN = 1

For further information, please refer to section “mlxconfig - Changing Device Configuration Tool” 
in the MFT User Manual (www.mellanox.com > Products > Software > Firmware Tools).

• Burn firmware with SR-IOV support where the number of virtual functions (VFs) will be set to 16
--enable-sriov

 Step 6. Verify the HCA is configured to support SR-IOV.
[root@selene ~]# mstflint -dev <PCI Device> dc
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 1. Verify in the [HCA] section the following fields appear1,2:
[HCA]
num_pfs = 1
total_vfs = <0-126>
sriov_en = true

Parameter Recommended Value

num_pfs 1
Note: This field is optional and might not always 
appear.

total_vfs • When using firmware version 2.31.5000 and 
above, the recommended value is 126.

• When using firmware version 2.30.8000 and 
below, the recommended value is 63

Note: Before setting number of VFs in SR-IOV, 
please make sure your system can support that 
amount of VFs. Setting number of VFs larger than 
what your Hardware and Software can support may 
cause your system to cease working.

sriov_en true
 2. Add the above fields to the INI if they are missing. 
 3. Set the total_vfs parameter to the desired number if you need to change the num-

ber of total VFs.
 4. Reburn the firmware using the mlxburn tool if the fields above were added to the 

INI, or the total_vfs parameter was modified. 
If the mlxburn is not installed, please downloaded it from the Mellanox website 
http://www.mellanox.com > products > Firmware tools 

mlxburn -fw ./fw-ConnectX3-rel.mlx -dev /dev/mst/mt4099_pci_cr0 -conf ./MCX341A-
XCG_Ax.ini

 Step 7. Create the text file /etc/modprobe.d/mlx4_core.conf if it does not exist, otherwise delete its 
contents.

 Step 8. Insert an "option" line in the /etc/modprobe.d/mlx4_core.conf file to set the number of VFs. 
the protocol type per port, and the allowed number of virtual functions to be used by the 
physical function driver (probe_vf).
For example:

options mlx4_core num_vfs=5 port_type_array=1,2 probe_vf=1

1. If SR-IOV is supported, to enable SR-IOV (if it is not enabled), it is sufficient to set “sriov_en = true” in the INI.
2. If the HCA does not support SR-IOV, please contact Mellanox Support: support@mellanox.com
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Parameter Recommended Value

num_vfs • If absent, or zero: no VFs will be available
• If its value is a single number in the range of 0-63: 

The driver will enable the num_vfs VFs on the HCA 
and this will be applied to all ConnectX® HCAs on 
the host.

• If its a triplet x,y,z (applies only if all ports are config-
ured as Ethernet) the driver creates:
• x single port VFs on physical port 1
• y single port VFs on physical port 2 (applies only if such a 

port exist) 
• z n-port VFs (where n is the number of physical ports on 

device). 
This applies to all ConnectX® HCAs on the host

• If its format is a string: The string specifies the 
num_vfs parameter separately per installed HCA.
The string format is:  "bb:dd.f-v,bb:dd.f-v,…"
• bb:dd.f = bus:device.function of the PF of the HCA
• v = number of VFs to enable for that HCA which is either a 

single value or a triplet, as described above.
For example:
• num_vfs=5 - The driver will enable 5 VFs on the HCA 

and this will be applied to all ConnectX® HCAs on 
the host

• num_vfs=00:04.0-5,00:07.0-8 - The driver will 
enable 5 VFs on the HCA positioned in BDF 00:04.0 
and 8 on the one in 00:07.0)

• num_vfs=1,2,3 - The driver will enable 1 VF on 
physical port 1, 2 VFs on physical port 2 and 3 dual 
port VFs (applies only to dual port HCA when all 
ports are Ethernet ports).

• num_vfs=00:04.0-5;6;7,00:07.0-8;9;10 - The 
driver will enable:
• HCA positioned in BDF 00:04.0

• 5 single VFs on port 1
• 6 single VFs on port 2
• 7 dual port VFs

• HCA positioned in BDF 00:07.0
• 8 single VFs on port 1
• 9 single VFs on port 2
• 10 dual port VFs

Applies when all ports are configure as Ethernet in dual port 
HCAs
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num_vfs Notes: 
• PFs not included in the above list will not have SR-

IOV enabled.
• Triplets and single port VFs are only valid when all 

ports are configured as Ethernet. When an InfiniBand 
port exists, only num_vfs=a syntax is valid where “a” 
is a single value that represents the number of VFs.

• The second parameter in a triplet is valid only when 
there are more than 1 physical port.
In a triplet, x+z<=63 and y+z<=63, the maximum number of 
VFs on each physical port must be 63.

port_type_array Specifies the protocol type of the ports. It is either one array 
of 2 port types 't1,t2' for all devices or list of BDF to 
port_type_array 'bb:dd.f-t1;t2,...'. (string)
Valid port types: 1-ib, 2-eth, 3-auto, 4-N/A
If only a single port is available, use the N/A port type for 
port2 (e.g '1,4'). 

probe_vf • If absent or zero: no VF interfaces will be loaded in 
the Hypervisor/host 

• If num_vfs is a number in the range of 1-63, the driver 
running on the Hypervisor will itself activate that 
number of VFs. All these VFs will run on the Hyper-
visor. This number will apply to all ConnectX® HCAs 
on that host.

• If its a triplet x,y,z (applies only if all ports are config-
ured as Ethernet), the driver probes:
• x single port VFs on physical port 1
• y single port VFs on physical port 2 (applies only if such a 

port exist) 
• z n-port VFs (where n is the number of physical ports on 

device). Those VFs are attached to the hypervisor.
• If its format is a string: the string specifies the 

probe_vf parameter separately per installed HCA.
The string format is:  "bb:dd.f-v,bb:dd.f-v,…
• bb:dd.f = bus:device.function of the PF of the HCA
• v = number of VFs to use in the PF driver for that HCA 

which is either a single value or a triplet, as described above
For example:
• probe_vfs=5 - The PF driver will activate 5 VFs on 

the HCA and this will be applied to all ConnectX® 
HCAs on the host

• probe_vfs=00:04.0-5,00:07.0-8 - The PF driver 
will activate 5 VFs on the HCA positioned in BDF 
00:04.0 and 8 for the one in 00:07.0)

Parameter Recommended Value
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The example above loads the driver with 5 VFs (num_vfs). The standard use of a VF is a single 
VF per a single VM. However, the number of VFs varies upon the working mode requirements.
The protocol types are:
• Port 1 = IB
• Port 2 = Ethernet

• port_type_array=2,2      (Ethernet, Ethernet)
• port_type_array=1,1      (IB, IB)
• port_type_array=1,2      (VPI: IB, Ethernet)
• NO port_type_array module parameter: ports are IB

 Step 9. Reboot the server.

If the SR-IOV is not supported by the server, the machine might not come out of boot/
load.

probe_vf • probe_vf=1,2,3 - The PF driver will activate 1 VF 
on physical port 1, 2 VFs on physical port 2 and 3 dual 
port VFs (applies only to dual port HCA when all 
ports are Ethernet ports). 
This applies to all ConnectX® HCAs in the host.

• probe_vf=00:04.0-5;6;7,00:07.0-8;9;10 - The 
PF driver will activate:
• HCA positioned in BDF 00:04.0

• 5 single VFs on port 1
• 6 single VFs on port 2
• 7 dual port VFs

• HCA positioned in BDF 00:07.0
• 8 single VFs on port 1
• 9 single VFs on port 2
• 10 dual port VFs

Applies when all ports are configure as Ethernet in dual port 
HCAs.

Notes: 
• PFs not included in the above list will not activate any 

of their VFs in the PF driver
• Triplets and single port VFs are only valid when all 

ports are configured as Ethernet. When an InfiniBand 
port exist, only probe_vf=a syntax is valid where “a” 
is a single value that represents the number of VFs

• The second parameter in a triplet is valid only when 
there are more than 1 physical port

• Every value (either a value in a triplet or a single 
value) should be less than or equal to the respective 
value of num_vfs parameter

Parameter Recommended Value
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 Step 10. Load the driver and verify the SR-IOV is supported. Run:
lspci | grep Mellanox
03:00.0 InfiniBand: Mellanox Technologies MT26428 [ConnectX VPI PCIe 2.0 5GT/s - IB QDR 
/ 10GigE] (rev b0)
03:00.1 InfiniBand: Mellanox Technologies MT27500 Family [ConnectX-3 Virtual Function] 
(rev b0)
03:00.2 InfiniBand: Mellanox Technologies MT27500 Family [ConnectX-3 Virtual Function] 
(rev b0)
03:00.3 InfiniBand: Mellanox Technologies MT27500 Family [ConnectX-3 Virtual Function] 
(rev b0)
03:00.4 InfiniBand: Mellanox Technologies MT27500 Family [ConnectX-3 Virtual Function] 
(rev b0)
03:00.5 InfiniBand: Mellanox Technologies MT27500 Family [ConnectX-3 Virtual Function] 
(rev b0)

Where:
• “03:00" represents the Physical Function
• “03:00.X" represents the Virtual Function connected to the Physical Function

3.4.1.3 Enabling SR-IOV and Para Virtualization on the Same Setup
 To enable SR-IOV and Para Virtualization on the same setup:
 Step 1. Create a bridge.

vim /etc/sysconfig/network-scripts/ifcfg-bridge0
DEVICE=bridge0
TYPE=Bridge
IPADDR=12.195.15.1
NETMASK=255.255.0.0
BOOTPROTO=static
ONBOOT=yes
NM_CONTROLLED=no
DELAY=0

 Step 2. Change the related interface (in the example below bridge0 is created over eth5).
DEVICE=eth5
BOOTPROTO=none
STARTMODE=on
HWADDR=00:02:c9:2e:66:52
TYPE=Ethernet
NM_CONTROLLED=no
ONBOOT=yes
BRIDGE=bridge0

 Step 3. Restart the service network.
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 Step 4. Attach a virtual NIC to VM.
ifconfig -a
…
eth6      Link encap:Ethernet  HWaddr 52:54:00:E7:77:99
          inet addr:13.195.15.5  Bcast:13.195.255.255  Mask:255.255.0.0
          inet6 addr: fe80::5054:ff:fee7:7799/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
         RX packets:481 errors:0 dropped:0 overruns:0 frame:0
          TX packets:450 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:22440 (21.9 KiB)  TX bytes:19232 (18.7 KiB)
          Interrupt:10 Base address:0xa000
…

3.4.1.4 Assigning a Virtual Function to a Virtual Machine
This section will describe a mechanism for adding a SR-IOV VF to a Virtual Machine.

Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server
 Step 1. Run the virt-manager.
 Step 2. Double click on the virtual machine and open its Properties.
 Step 3. Go to Details->Add hardware ->PCI host device.

 Step 4. Choose a Mellanox virtual function according to its PCI device (e.g., 00:03.1)
 Step 5. If the Virtual Machine is up reboot it, otherwise start it.
 Step 6. Log into the virtual machine and verify that it recognizes the Mellanox card. Run:

lspci | grep Mellanox

00:03.0 InfiniBand: Mellanox Technologies MT27500 Family [ConnectX-3 Virtual Function] 
(rev b0)
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 Step 7. Add the device to the /etc/sysconfig/network-scripts/ifcfg-ethX configuration file. 
The MAC address for every virtual function is configured randomly, therefore it is not nec-
essary to add it.

3.4.1.5 Uninstalling SR-IOV Driver
 To uninstall SR-IOV driver, perform the following:
 Step 1. For Hypervisors, detach all the Virtual Functions (VF) from all the Virtual Machines (VM) 

or stop the Virtual Machines that use the Virtual Functions.
Please be aware, stopping the driver when there are VMs that use the VFs, will cause machine to hang.

 Step 2. Run the script below. Please be aware, uninstalling the driver deletes the entire driver's file, 
but does not unload the driver.

[root@swl022 ~]# /usr/sbin/ofed_uninstall.sh
This program will uninstall all OFED packages on your machine.
Do you want to continue?[y/N]:y
Running /usr/sbin/vendor_pre_uninstall.sh
Removing OFED Software installations
Running /bin/rpm -e --allmatches kernel-ib kernel-ib-devel libibverbs libibverbs-devel 
libibverbs-devel-static libibverbs-utils libmlx4 libmlx4-devel libibcm libibcm-devel 
libibumad libibumad-devel libibumad-static libibmad libibmad-devel libibmad-static 
librdmacm librdmacm-utils librdmacm-devel ibacm opensm-libs opensm-devel perftest com-
pat-dapl compat-dapl-devel dapl dapl-devel dapl-devel-static dapl-utils srptools infini-
band-diags-guest ofed-scripts opensm-devel
warning: /etc/infiniband/openib.conf saved as /etc/infiniband/openib.conf.rpmsave
Running /tmp/2818-ofed_vendor_post_uninstall.sh

 Step 3. Restart the server.

3.4.1.6 Configuring Pkeys and GUIDs under SR-IOV

Port Type Management
Port Type management is static when enabling SR-IOV (the connectx_port_config script will 
not work). The port type is set on the Host via a module parameter, port_type_array, in 
mlx4_core. This parameter may be used to set the port type uniformly for all installed Con-
nectX® HCAs, or it may specify an individual configuration for each HCA.
This parameter should be specified as an options line in the file /etc/modprobe.d/

mlx4_core.conf.
For example, to configure all HCAs to have Port1 as IB and Port2 as ETH, insert the following 
line:

options mlx4_core port_type_array=1,2

To set HCAs individually, you may use a string of Domain:bus:device.function=x;y
For example, if you have a pair of HCAs, whose PFs are 0000:04:00.0 and 0000:05:00.0, you 
may specify that the first will have both ports as IB, and the second will have both ports as ETH 
as follows:

options mlx4_core port_type_array='0000:04:00.0-1;1,0000:05:00.0-2;2
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Only the PFs are set via this mechanism. The VFs inherit their port types from their asso-
ciated PF.

Virtual Function InfiniBand Ports
Each VF presents itself as an independent vHCA to the host, while a single HCA is observable 
by the network which is unaware of the vHCAs. No changes are required by the InfiniBand sub-
system, ULPs, and applications to support SR-IOV, and vHCAs are interoperable with any exist-
ing (non-virtualized) IB deployments.
Sharing the same physical port(s) among multiple vHCAs is achieved as follows:
• Each vHCA port presents its own virtual GID table

For further details, please refer to Section 3.4.1.6.3, on page 182.
• Each vHCA port presents its own virtual PKey table

The virtual PKey table (presented to a VF) is a mapping of selected indexes of the physical 
PKey table. The host admin can control which PKey indexes are mapped to which virtual 
indexes using a sysfs interface. The physical PKey table may contain both full and partial mem-
berships of the same PKey to allow different membership types in different virtual tables.

• Each vHCA port has its own virtual port state
A vHCA port is up if the following conditions apply:
• The physical port is up
• The virtual GID table contains the GIDs requested by the host admin
• The SM has acknowledged the requested GIDs since the last time that the physical port 

went up
• Other port attributes are shared, such as: GID prefix, LID, SM LID, LMC mask
To allow the host admin to control the virtual GID and PKey tables of vHCAs, a new sysfs 'iov' 
sub-tree has been added under the PF InfiniBand device.

3.4.1.6.1 SR-IOV sysfs Administration Interfaces on the Hypervisor
Administration of GUIDs and PKeys is done via the sysfs interface in the Hypervisor (Dom0). 
This interface is under:

/sys/class/infiniband/<infiniband device>/iov

Under this directory, the following subdirectories can be found:
• ports - The actual (physical) port resource tables

Port GID tables:
• ports/<n>/gids/<n> where 0 <= n <= 127 (the physical port gids)
• ports/<n>/admin_guids/<n> where 0 <= n <= 127 (allows examining or changing the 

administrative state of a given GUID>
• ports/<n>/pkeys/<n> where 0 <= n <= 126 (displays the contents of the physical pkey 

table)
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• <pci id> directories - one for Dom0 and one per guest. Here, you may see the map-
ping between virtual and physical pkey indices, and the virtual to physical gid 0.
Currently, the GID mapping cannot be modified, but the pkey virtual to physical mapping can .
These directories have the structure:
• <pci_id>/port/<m>/gid_idx/0 where m = 1..2 (this is read-only)

and
• <pci_id>/port/<m>/pkey_idx/<n>, where m = 1..2 and n = 0..126

For instructions on configuring pkey_idx, please see below.

3.4.1.6.2 Configuring an Alias GUID (under ports/<n>/admin_guids)
 Step 1. Determine the GUID index of the PCI Virtual Function that you want to pass through to a 

guest.
For example, if you want to pass through PCI function 02:00.3 to a certain guest, you ini-
tially need to see which GUID index is used for this function.
To do so:

cat /sys/class/infiniband/iov/0000:02:00.3/port/<port_num>/gid_idx/0

The value returned will present which guid index to modify on Dom0.
 Step 2. Modify the physical GUID table via the admin_guids sysfs interface.

To configure the GUID at index <n> on port <port_num>
cd /sys/class/infiniband/mlx4_0/iov/ports/<port_num>/admin_guids
echo <your desired guid>  > n

:

 Example:
cd /sys/class/infiniband/mlx4_0/iov/ports/1/admin_guids

echo1

1. echo "0x0" means let the SM assign a value to that GUID 
echo "0xffffffffffffffff" means delete that GUID 
echo <any other value> means request the SM to assign this GUID to this index

 "0x002fffff8118" > 3

 Step 3. Read the administrative status of the GUID index.
To read the administrative status of GUID index m on port n

cat /sys/class/infiniband/mlx4_0/iov/ports/<n>/admin_guids/<m>

:

 Step 4. Check the operational state of a GUID.
 /sys/class/infiniband/mlx4_0/iov/ports/<n>/gids  (where n = 1 or 2)

The values indicate what gids are actually configured on the firmware/hardware, and all 
the entries are R/O.

 Step 5. Compare the value you read under the "admin_guids" directory at that index with the value 
under the "gids" directory, to verify the change requested in Step 3 has been accepted by 
the SM, and programmed into the hardware port GID table.
If the value under admin_guids/<m> is different that the value under gids/<m>, the 
request is still in progress.
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3.4.1.6.3 Multi-GUID Support in InfiniBand
As of MLNX_OFED v2.2-1.0.0, Infiniband VFs in SR-IOV setting can have more than a single 
GUID to be used for their purposes. Totally there are 128 GUIDs per port, where the PF occupies 
2 entries, and the remaining GUIDs are divided equally between all the VFs. If there are any 
remainders, those GUIDs are given to the VFs with the lowest IDs. 
For example in case that are 5 VFs, the division will be as follows: PF – 2, slave 1 will have 26 
and last 4 slaves will have 25. (2 + 1 * 26 + 4 * 25 = 128).
To find the mapping between VF's GUID entry to its physical one, use the sysfs mechanism 
<gid_idx> directory.
The example below shows the mapping between “entry 0” of <PCI FUNCTION #1> to its physical 
one on port number 1.

cat /sys/class/infiniband/mlx4_0/iov/<PCI FUNCTION #1>/ports/1/gid_idx/0

Initial GUIDs' values depend on the mlx4_ib module parameter 'sm_guid_assign' as follows:

Mode Type Description

sm assigned Asks SM for values for GUID entry 0 per VF. Other entries will have 
value 0 in the port GUID table, and ffffffffffffffff under their matching 
admin_guids entry.
This is the default mode (value=1).
For example, as GUID entry 1 is not the base gid index of the HYP, upon 
startup it will have the below values under the sysfs entries:
cat /sys/class/infiniband/mlx4_0/iov/ports/1/admin_guids/1

ffffffffffffffff

cat /sys/class/infiniband/mlx4_0/iov/ports/1/gids/1

fe80:0000:0000:0000:0000:0000:0000:0000

admin assigned Once sm_guid_assign is set to 0, the driver works in admin assigned 
mode which result in having only valid value for GUID entry 0 for the 
PF. All other entries under the port will be 0 and corresponding 
admin_guids will be ffffffffffffffff.

Port Up/Down
When moving to multi-guid mode, the port is assumed to be up when the base GUID index per 
VF/PF (entry 0) has a valid value. Setting other GUID entries does not affect the port status.
However, any change in a GUID will cause a GUID change event for its VF/PF even if it is not 
the base one.

Persistency Support
Once admin request is rejected by the SM, a retry mechanism is set. Retry time is set to 1 second, 
and for each retry it is multiplied by 2 until reaching the maximum value of 60 seconds. Addi-
tionally, when looking for the next record to be updated, the record having the lowest time to be 
executed is chosen. 
Any value reset via the admin_guid interface is immediately executed and it  resets this entry 
timer.
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3.4.1.6.4 Partitioning IPoIB Communication using PKeys
PKeys are used to partition IPoIB communication between the Virtual Machines and the Dom0 
by mapping a non-default full-membership PKey to virtual index 0, and mapping the default 
PKey to a virtual pkey index other than zero.
The below describes how to set up two hosts, each with 2 Virtual Machines. Host-1/vm-1 will be 
able to communicate via IPoIB only with Host2/vm1,and Host1/vm2 only with Host2/vm2.
In addition, Host1/Dom0 will be able to communicate only with Host2/Dom0 over ib0. vm1 and 
vm2 will not be able to communicate with each other, nor with Dom0.
This is done by configuring the virtual-to-physical PKey mappings for all the VMs, such that at 
virtual PKey index 0, both vm-1s will have the same pkey and both vm-2s will have the same 
PKey (different from the vm-1's), and the Dom0's will have the default pkey (different from the 
vm's pkeys at index 0).
OpenSM must be used to configure the physical Pkey tables on both hosts.
• The physical Pkey table on both hosts (Dom0) will be configured by OpenSM to be:

index 0 = 0xffff
index 1 = 0xb000
index 2 = 0xb030

• The vm1's virt-to-physical PKey mapping will be:
pkey_idx 0 = 1
pkey_idx 1 = 0

• The vm2's virt-to-phys pkey mapping will be:
pkey_idx 0 = 2
pkey_idx 1 = 0

so that the default pkey will reside on the vms at index 1 instead of at index 0.
The IPoIB QPs are created to use the PKey at index 0. As a result, the Dom0, vm1 and vm2 
IPoIB QPs will all use different PKeys. 
 To partition IPoIB communication using PKeys:
 Step 1. Create a file "/etc/opensm/partitions.conf" on the host on which OpenSM runs, con-

taining lines.
Default=0x7fff,ipoib : ALL=full ;
Pkey1=0x3000,ipoib : ALL=full;
Pkey3=0x3030,ipoib : ALL=full;

This will cause OpenSM to configure the physical Port Pkey tables on all physical ports on 
the network as follows:

pkey idx | pkey value
---------|---------
       0 | 0xFFFF
       1 | 0xB000
       2 | 0xB030

(the most significant bit indicates if a PKey is a full PKey).

The ",ipoib" causes OpenSM to pre-create IPoIB the broadcast group for the indicated 
PKeys.
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 Step 2. Configure (on Dom0) the virtual-to-physical PKey mappings for the VMs.
Step a. Check the PCI ID for the Physical Function and the Virtual Functions.

lspci | grep Mel

Step b. Assuming that on Host1, the physical function displayed by lspci is "0000:02:00.0", and that 
on Host2 it is "0000:03:00.0" 
On Host1 do the following.

cd /sys/class/infiniband/mlx4_0/iov

0000:02:00.0  0000:02:00.1 0000:02:00.2 ...1

1. 0000:02:00.0 contains the virtual-to-physical mapping tables for the physical func-
tion. 
0000:02:00.X contain the virt-to-phys mapping tables for the virtual functions.

Do not touch the Dom0 mapping table (under <nnnn>:<nn>:00.0). Modify only 
tables under 0000:02:00.1 and/or 0000:02:00.2. We assume that vm1 uses VF 
0000:02:00.1 and vm2 uses VF 0000:02:00.2

Step c. Configure the virtual-to-physical PKey mapping for the VMs.
echo 0 > 0000:02:00.1/ports/1/pkey_idx/1
echo 1 > 0000:02:00.1/ports/1/pkey_idx/0
echo 0 > 0000:02:00.2/ports/1/pkey_idx/1
echo 2 > 0000:02:00.2/ports/1/pkey_idx/0

vm1 pkey index 0 will be mapped to physical pkey-index 1, and vm2 pkey index 
0 will be mapped to physical pkey index 2. Both vm1 and vm2 will have their 
pkey index 1 mapped to the default pkey.

Step d. On Host2 do the following.
cd /sys/class/infiniband/mlx4_0/iov
echo 0 > 0000:03:00.1/ports/1/pkey_idx/1
echo 1 > 0000:03:00.1/ports/1/pkey_idx/0
echo 0 > 0000:03:00.2/ports/1/pkey_idx/1
echo 2 > 0000:03:00.2/ports/1/pkey_idx/0

Step e. Once the VMs are running, you can check the VM's virtualized PKey table by doing (on the 
vm).

cat /sys/class/infiniband/mlx4_0/ports/[1,2]/pkeys/[0,1]

 Step 3. Start up the VMs (and bind VFs to them).
 Step 4. Configure IP addresses for ib0 on the host and on the guests.

Ethernet Virtual Function Configuration when Running SR-IOV

3.4.1.6.5 VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)
When running ETH ports on VGT, the ports may be configured to simply pass through packets as 
is from VFs (Vlan Guest Tagging), or the administrator may configure the Hypervisor to silently 
force packets to be associated with a VLan/Qos (Vlan Switch Tagging).
In the latter case, untagged or priority-tagged outgoing packets from the guest will have the 
VLAN tag inserted, and incoming packets will have the VLAN tag removed. Any vlan-tagged 
packets sent by the VF are silently dropped. The default behavior is VGT.
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The feature may be controlled on the Hypervisor from userspace via iprout2 / netlink:
ip link set { dev DEVICE | group DEVGROUP } [ { up | down } ]
   ...
   [ vf NUM [ mac LLADDR ]
      [ vlan VLANID [ qos VLAN-QOS ] ]
          ...
   [ spoofchk { on | off} ] ] 
          ...

use:
ip link set dev <PF device> vf <NUM> vlan <vlan_id> [qos <qos>]

• where NUM = 0..max-vf-num
• vlan_id = 0..4095   (4095 means "set VGT")
• qos = 0..7

For example:
• ip link set dev eth2 vf 2 qos 3 - sets VST mode for VF #2 belonging to PF eth2, 

with qos = 3
• ip link set dev eth2 vf 2 4095 - sets mode for VF 2 back to VGT

3.4.1.6.6 Additional Ethernet VF Configuration Options
• Guest MAC configuration

By default, guest MAC addresses are configured to be all zeroes. In the mlnx_ofed guest driver,                    
if a guest sees a zero MAC, it generates a random MAC address for itself. If the administrator 
wishes the guest to always start up with the same MAC, he/she should configure guest MACs 
before the guest driver comes up.
The guest MAC may be configured by using:

 ip link set dev <PF device> vf <NUM> mac <LLADDR>

For legacy guests, which do not generate random MACs, the adminstrator should always con-
figure their MAC addresses via ip link, as above.

• Spoof checking
Spoof checking is currently available only on upstream kernels newer than 3.1.

ip link set dev <PF device> vf <NUM> spoofchk [on | off]

3.4.1.6.7 Mapping VFs to Ports
 To view the VFs mapping to ports:

Using the ip link tool v2.6.34~3 and above.
ip link

The output is as following:
61: p1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group 
default qlen 1000
    link/ether 00:02:c9:f1:72:e0 brd ff:ff:ff:ff:ff:ff
    vf 0 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
    vf 37 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
    vf 38 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state disable
    vf 39 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state disable
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When a MAC is ff:ff:ff:ff:ff:ff, the VF is not assigned to the port of the net device it is listed 
under. In the example above, vf 38 is not assigned to the same port as p1p1, in contrast to vf0.
However, even VFs that are not assigned to the net device, could be used to set and change its 
settings. For example, the following is a valid command to change the spoof check:

ip link set dev p1p1 vf 38 spoofchk on

This command will affect only the vf 38. The changes can be seen in ip link on the net device 
that this device is assigned to.

3.4.1.6.8 Mapping VFs to Ports using the mlnx_get_vfs.pl tool
 To map the PCI representation in BDF to the respective ports:

mlnx_get_vfs.pl

The output is as following:
BDF 0000:04:00.0
        Port 1: 2
                vf0     0000:04:00.1
                vf1     0000:04:00.2
        Port 2: 2
                vf2     0000:04:00.3
                vf3     0000:04:00.4
        Both: 1
                vf4   0000:04:00.5

3.4.1.6.9 RoCE Support
RoCE is supported on Virtual Functions and VLANs may be used with it. For RoCE, the hyper-
visor GID table size is of 16 entries while the VFs share the remaining 112 entries. When the 
number of VFs is larger than 56 entries, some of them will have GID table with only a single 
entry which is inadequate if VF's Ethernet device is assigned with an IP address.
When setting num_vfs in mlx4_core module parameter it is important to check that the number 
of the assigned IP addresses per VF does not exceed the limit for GID table size.

3.4.1.7 Running Network Diagnostic Tools on a Virtual Function
Until now, in MLNX_OFED, administrators were unable to run network diagnostics from a VF 
since sending and receiving Subnet Management Packets (SMPs) from a VF was not allowed, for 
security reasons: SMPs are not restricted by network partitioning and may affect the physical net-
work topology. Moreover, even the SM may be denied access from portions of the network by 
setting management keys unknown to the SM.
However, it is desirable to grant SMP capability to certain privileged VFs, so certain network 
management activities may be conducted within virtual machines rather than only on the hyper-
visor.

Granting SMP Capability to a Virtual Function
To enable SMP capability for a VF, one must enable the Subnet Management Interface (SMI) for 
that VF. By default, the SMI interface is disabled for VFs. To enable SMI mads for VFs, there are 
two new sysfs entries per VF per on the Hypervisor (under /sys/class/infiniband/mlx4_X/
iov/<b.d.f>/ports/<1 or 2>. These entries are displayed only for VFs (not for the PF), and 
only for IB ports (not ETH ports).
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The first entry, enable_smi_admin, is used to enable SMI on a VF. By default, the value of this 
entry is zero (disabled). When set to “1”, the SMI will be enabled for the VF on the next rebind 
or openibd restart on the VM that the VF is bound to. If the VF is currently bound, it must be 
unbound and then re-bound.
The second sysfs entry, smi_enabled, indicates the current enablement state of the SMI. 0 indi-
cates disabled, and 1 indicates enabled. This entry is read-only.
When a VF is initialized (bound), during the initialization sequence, the driver copies the 
requested smi_state (enable_smi_admin) for that VF/port to the operational SMI state 
(smi_enabled) for that VF/port, and operate according to the operational state.
Thus, the sequence of operations on the hypevisor is:
 Step 1. Enable SMI for any VF/port that you wish.
 Step 2. Restart the VM that the VF is bound to (or just run /etc/init.d/openibd restart on that 

VM)
The SMI will be enabled for the VF/port combinations that you set in step 2 above. You will then 
be able to run network diagnostics from that VF.

Installing MLNX_OFED with Network Diagnostics on a VM
 To install mlnx_ofed on a VF which will be enabled to run the tools, run the following on 

the VM:
# mlnx_ofed_install

3.4.1.8 Virtual Guest Tagging (VGT+)
VGT+ is an advanced mode of Virtual Guest Tagging (VGT), in which a VF is allowed to tag its 
own packets as in VGT, but is still subject to an administrative VLAN trunk policy. The policy 
determines which VLAN IDs are allowed to be transmitted or received. The policy does not 
determine the user priority, which is left unchanged.
Packets can be send in one of the following modes: when the VF is allowed to send/receive 
untagged and priority tagged traffic and when it is not. No default VLAN is defined for VGT+ 
port. The send packets are passed to the eSwitch only if they match the set, and the received 
packets are forwarded to the VF only if they match the set.
The following are current VGT+ limitations:
• The size of the VLAN set is defined to be up to 10 VLANs including the VLAN 0 that is 

added for untagged/priority tagged traffic
• This behavior applies to all VF traffic: plain Ethernet, and all RoCE transports
• VGT+ allowed VLAN sets may be only extended when the VF is online
• An operational VLAN set becomes identical as the administration VLAN set only after a 

VF reset
• VGT+ is available in DMFS mode only
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3.4.1.8.1 Configuring VGT+
The default operating mode is VGT:

cat /sys/class/net/eth5/vf0/vlan_set
oper:
admin:

Both states (operational and administrative) are empty.

If you set the vlan_set parameter with more the 10 VLAN IDs, the driver chooses the 
first 10 VLAN IDs provided and ignores all the rest.

 To enable VGT+ mode:
 Step 1. Set the corresponding port/VF (in the example below port eth5 VF0) list of allowed 

VLANs.
echo 0 1 2 3 4 5 6 7 8 9 > /sys/class/net/eth5/vf0/vlan_set

Where 0 specifies if untagged/priority tagged traffic is allowed.
Meaning if the below command is ran, you will not be able to send/receive untagged traf-
fic.

echo 1 2 3 4 5 6 7 8 9 10 > /sys/class/net/eth5/vf0/vlan_set

 Step 2. Reboot the relevant VM for changes to take effect.
(or run: /etc/init.d/openibd restart)

 To disable VGT+ mode:
 Step 1. Set the VLAN.

echo > /sys/class/net/eth5/vf0/vlan_set

 Step 2. Reboot the relevant VM for changes to take effect.
(or run: /etc/init.d/openibd restart)
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 To add a VLAN:
In the example below, the following state exist:

# cat /sys/class/net/eth5/vf0/vlan_set
oper: 0 1 2 3
admin: 0 1 2 3

 Step 1. Make an operational VLAN set identical to the administration VLAN.
echo 2 3 4 5 6 > /sys/class/net/eth5/vf0/vlan_set

The delta will be added to the operational state immediately (4 5 6):
# cat /sys/class/net/eth5/vf0/vlan_set
oper: 0 1 2 3 4 5 6
admin: 2 3 4 5 6

 Step 2. Reset the VF for changes to take effect.

3.4.2 VXLAN

3.4.2.1 Prerequisites
•  HCA: ConnectX-3 Pro 
•  Firmware 2.31.5020 or higher
•  RHEL7, Ubuntu 14.04 or upstream kernel 3.12.10 (or higher)
•  DMFS enabled

3.4.2.2 Enabling VXLAN
To enable the vxlan offloads support load the mlx4_core driver with Device-Managed Flow-
steering (DMFS) enabled. DMFS is the default steering mode. 
To verify VXLAN is enabled, verify the Ethernet net-device created by the mlx4_en driver 
advertises the NETIF_F_GSO_UDP_TUNNEL feature, which can be seen by the "eththool -K $DEV 
| grep udp"

For example:
$ ethtool -k eth0 | grep udp_tnl
tx-udp_tnl-segmentation: on

Make sure that the VXLAN tunnel is set over UDP port 4789, which is the ConnectX firmware 
default. If using standard Linux bridge (and not open vswitch) set the following /etc/mod-
probe.d/vxlan.conf:

options vxlan udp_port=4789

 

3.4.2.3 Important Notes
• VXLAN tunneling adds 50 bytes (14-eth + 20-ip + 8-udp + 8-vxlan) to the VM Ethernet 

frame. Please verify that either the MTU of the NIC who sends the packets, e.g. the VM 
virtio-net NIC or the host side veth device or the uplink takes into account the tunneling 
overhead. Meaning, the MTU of the sending NIC has to be decremented by 50 bytes  
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(e.g 1450 instead of 1500), or the uplink NIC MTU has to be incremented by 50 bytes 
(e.g 1550 instead of 1500)

• From upstream 3.15-rc1 and onward, it is possible to use arbitrary UDP port for 
VXLAN. Note that this requires firmware version 2.31.2800 or higher. Additionally, you 
need to enable this kernel configuration option CONFIG_MLX4_EN_VXLAN=y.

• On upstream kernels 3.12/3.13 GRO with VXLAN is not supported

3.5 Resiliency

3.5.1 Reset Flow

Reset Flow is activated by default, once a "fatal device1" error is recognized. Both the HCA and 
the software are reset, the ULPs and user application are notified about it, and a recovery process 
is performed once the event is raised. The "Reset Flow" is activated by the mlx4_core module 
parameter 'internal_err_reset', and its default value is 1.

3.5.1.1 Kernel ULPs
Once a "fatal device" error is recognized, an IB_EVENT_DEVICE_FATAL event is created, ULPs are 
notified about the incident, and outstanding WQEs are simulated to be returned with "flush in 
error" message to enable each ULP to close its resources and not get stuck via calling its 
"remove_one" callback as part of "Reset Flow".
Once the unload part is terminated, each ULP is called with its "add_one" callback, its resources 
are re-initialized and it is re-activated.

3.5.1.2 User Space Applications (IB/RoCE)
Once a "fatal device" error is recognized an IB_EVENT_DEVICE_FATAL event is created, applica-
tions are notified about the incident and relevant recovery actions are taken.
Applications that ignore this event enter a zombie state, where each command sent to the kernel 
is returned with an error, and no completion on outstanding WQEs is expected.
The expected behavior from the applications is to register to receive such events and recover 
once the above event is raised. Same behavior is expected in case the NIC is unbounded from the 
PCI and later is rebounded. Applications running over RDMA CM should behave in the same 
manner once the RDMA_CM_EVENT_DEVICE_REMOVAL event is raised.
The below is an example of using the unbind/bind for NIC defined by "0000:04:00.0"

echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx4_core/unbind
echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx4_core/bind

3.5.1.3 SR-IOV
If the Physical Function recognizes the error, it notifies all the VFs about it by marking their 
communication channel with that information, consequently, all the VFs and the PF are reset.
If the VF encounters an error, only that VF is reset, whereas the PF and other VFs continue to 
work unaffected.

1. A “fatal device” error can be a timeout from a firmware command, an error on a firmware closing command, communication channel not being 
responsive in a VF. etc.
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3.5.1.4 Forcing the VF to Reset
If an outside "reset" is forced by using the PCI sysfs entry for a VF, a reset is executed on that VF 
once it runs any command over its communication channel.
For example, the below command can be used on a hypervisor to reset a VF defined by 
0000\:04\:00.1:

echo 1 >/sys/bus/pci/devices/0000\:04\:00.1/reset

3.5.1.5 Advanced Error Reporting (AER)
AER, a mechanism used by the driver to get notifications upon PCI errors, is supported only in 
native mode, ULPs are called with remove_one/add_one and expect to continue working prop-
erly after that flow.User space application will work in same mode as defined in the "Reset Flow" 
above.

3.6 HPC-X™
For further information, please refer to HPC-X™ User Manual (www.mellanox.com --> 
Products --> HPC-X --> HPC-X Toolkit)
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4 InfiniBand Fabric Utilities
This section first describes common configuration, interface, and addressing for all the tools in 
the package.

4.1 Common Configuration, Interface and Addressing

4.1.1 Topology File (Optional)
An InfiniBand fabric is composed of switches and channel adapter (HCA/TCA) devices. To iden-
tify devices in a fabric (or even in one switch system), each device is given a GUID (a MAC 
equivalent). Since a GUID is a non-user-friendly string of characters, it is better to alias it to a 
meaningful, user-given name. For this objective, the IB Diagnostic Tools can be provided with a 
“topology file”, which is an optional configuration file specifying the IB fabric topology in user-
given names.
For diagnostic tools to fully support the topology file, the user may need to provide the local sys-
tem name (if the local hostname is not used in the topology file).
To specify a topology file to a diagnostic tool use one of the following two options:
1. On the command line, specify the file name using the option ‘-t <topology file name>’
2. Define the environment variable IBDIAG_TOPO_FILE
To specify the local system name to an diagnostic tool use one of the following two options:
1. On the command line, specify the system name using the option ‘-s <local system name>’
2. Define the environment variable IBDIAG_SYS_NAME

4.2 InfiniBand Interface Definition
The diagnostic tools installed on a machine connect to the IB fabric by means of an HCA port 
through which they send MADs. To specify this port to an IB diagnostic tool use one of the fol-
lowing options:
1. On the command line, specify the port number using the option ‘-p <local port number>’ (see 

below)
2. Define the environment variable IBDIAG_PORT_NUM
In case more than one HCA device is installed on the local machine, it is necessary to specify the 
device’s index to the tool as well. For this use on of the following options:
1. On the command line, specify the index of the local device using the following option: 

‘-i <index of local device>’
2. Define the environment variable IBDIAG_DEV_IDX
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4.3 Addressing

This section applies to the ibdiagpath tool only. A tool command may require defining 
the destination device or port to which it applies. 

The following addressing modes can be used to define the IB ports:

• Using a Directed Route to the destination: (Tool option ‘-d’)
This option defines a directed route of output port numbers from the local port to the destina-
tion.

• Using port LIDs: (Tool option ‘-l’):
In this mode, the source and destination ports are defined by means of their LIDs. If the fabric 
is configured to allow multiple LIDs per port, then using any of them is valid for defining a 
port.

• Using port names defined in the topology file: (Tool option ‘-n’)
This option refers to the source and destination ports by the names defined in the topology file. 
(Therefore, this option is relevant only if a topology file is specified to the tool.) In this mode, 
the tool uses the names to extract the port LIDs from the matched topology, then the tool oper-
ates as in the ‘-l’ option.

4.4 Diagnostic Utilities
The diagnostic utilities described in this chapter provide means for debugging the connectivity 
and status of InfiniBand (IB) devices in a fabric. 

Table 7 - Diagnostic Utilities  (Sheet 1 of 6)

Utility Description

dump_fts Dumps tables for every switch found in an ibnetdiscover scan of the subnet. 
The dump file format is compatible with loading into OpenSM using the -R 
file -U /path/to/dump-file syntax.
For further information, please refer to the tool’s man page.

ibaddr Can be used to show the LID and GID addresses of the specified port or the 
local port by default. This utility can be used as simple address resolver.
For further information, please refer to the tool’s man page.

ibcacheedit Allows users to edit an ibnetdiscover cache created through the --cache option 
in ibnetdiscover(8).
For further information, please refer to the tool’s man page.

ibccconfig Supports the configuration of congestion control settings on switches and 
HCAs.
For further information, please refer to the tool’s man page.

ibccquery Supports the querying of settings and other information related to congestion 
control.
For further information, please refer to the tool’s man page.
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ibcongest Provides static congestion analysis. It calculates routing for a given topology 
(topo-mode) or uses extracted lst/fdb files (lst-mode). Additionally, it ana-
lyzes congestion for a traffic schedule provided in a "schedule-file" or uses an 
automatically generated schedule of all-to-all-shift.
To display a help message which details the tool's options, please run "/opt/
ibutils2/bin/ibcongest -h".
For further information, please refer to the tool’s man page.

ibdev2netdev Enables association between IB devices and ports and the associated net 
device. Additionally it reports the state of the net device link.
For further information, please refer to the tool’s man page.

ibdiagnet  
(of ibutils)

This version of ibdiagnet is included in the ibutils package, and it is not run by 
default after installing Mellanox OFED. 
To use this ibdiagnet version and not that of the ibutils package, you need to 
specify the full path: /opt/ibutils/bin
Note: ibdiagnet is an obsolete package. We recommend using ibdiagnet from 
ibutils2. 
For further information, please refer to the tool’s man page.

ibdiagnet  
(of ibutils2)

Scans the fabric using directed route packets and extracts all the available 
information regarding its connectivity and devices. An ibdiagnet run performs 
the following stages:
• Fabric discovery
• Duplicated GUIDs detection
• Links in INIT state and unresponsive links detection
• Counters fetch
• Error counters check
• Routing checks
• Link width and speed checks
• Alias GUIDs check
• Subnet Manager check
• Partition keys check
• Nodes information
Note: This version of ibdiagnet is included in the ibutils2 package, and it is 
run by default after installing Mellanox OFED. To use this ibdiagnet version, 
run: ibdiagnet. 
For further information, please refer to the tool’s man page.

Table 7 - Diagnostic Utilities  (Sheet 2 of 6)

Utility Description
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ibdiagpath Traces a path between two end-points and provides information regarding the 
nodes and ports traversed along the path. It utilizes device specific health que-
ries for the different devices along the path.
The way ibdiagpath operates depends on the addressing mode used on the 
command line. If directed route addressing is used (-d flag), the local node is 
the source node and the route to the destination port is known apriori. On the 
other hand, if LID-route (or by-name) addressing is employed, then the source 
and destination ports of a route are specified by their LIDs (or by the names 
defined in the topology file). In this case, the actual path from the local port to 
the source port, and from the source port to the destination port, is defined by 
means of Subnet Management Linear Forwarding Table queries of the switch 
nodes along that path. Therefore, the path cannot be predicted as it may 
change.
ibdiagpath should not be supplied with contradicting local ports by the -p and 
-d flags (see synopsis descriptions below). In other words, when ibdiagpath is 
provided with the options -p and -d together, the first port in the direct route 
must be equal to the one specified in the “-p” option. Otherwise, an error is 
reported.
Moreover, the tool allows omitting the source node in LID-route addressing, 
in which case the local port on the machine running the tool is assumed to be 
the source.
Note: When ibdiagpath queries for the performance counters along the path 
between the source and destination ports, it always traverses the LID route, 
even if a directed route is specified. If along the LID route one or more links 
are not in the ACTIVE state, ibdiagpath reports an error.
ibdiagpath is located at: /opt/ibutisl/bin.
For further information, please refer to the tool’s man page.

ibdump Dump InfiniBand traffic that flows to and from Mellanox Technologies Con-
nectX® family adapters InfiniBand ports. The dump file can be loaded by the 
Wireshark tool for graphical traffic analysis.
The following describes a work flow for local HCA (adapter) sniffing:
1. Run ibdump with the desired options
2. Run the application that you wish its traffic to be analyzed
3. Stop ibdump (CTRL-C) or wait for the data buffer to fill (in --mem-mode)
4. Open Wireshark and load the generated file

To download Wireshark for a Linux or Windows environment go to www.wire-
shark.org.

Note: Although ibdump is a Linux application, the generated .pcap file may 
be analyzed on either operating system.
In order for ibdump to function with RoCE, Flow Steering must be enabled. 
To do so:
1. Add the following to /etc/modprobe.d/mlnx.conf file:

options mlx4_core log_num_mgm_entry_size=-1
2. Restart the drivers.
For further information, please refer to the tool’s man page.

Table 7 - Diagnostic Utilities  (Sheet 3 of 6)

Utility Description
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iblinkinfo Reports link info for each port in an InfiniBand fabric, node by node. Option-
ally, iblinkinfo can do partial scans and limit its output to parts of a fabric.
For further information, please refer to the tool’s man page.

ibnetdiscover Performs InfiniBand subnet discovery and outputs a human readable topology 
file. GUIDs, node types, and port numbers are displayed as well as port LIDs 
and node descriptions. All nodes (and links) are displayed (full topology). 
This utility can also be used to list the current connected nodes. The output is 
printed to the standard output unless a topology file is specified.
For further information, please refer to the tool’s man page.

ibnetsplit Automatically groups hosts and creates scripts that can be run in order to split 
the network into sub-networks containing one group of hosts.
For further information, please refer to the tool’s man page.

ibnodes Uses the current InfiniBand subnet topology or an already saved topology file 
and extracts the InfiniBand nodes (CAs and switches).
For further information, please refer to the tool’s man page.

ibping Uses vendor mads to validate connectivity between InfiniBand nodes. On 
exit, (IP) ping like output is show. ibping is run as client/server. The default is 
to run as client. Note also that a default ping server is implemented within the 
kernel.
For further information, please refer to the tool’s man page.

ibportstate Enables querying the logical (link) and physical port states of an InfiniBand 
port. It also allows adjusting the link speed that is enabled on any InfiniBand 
port.
If the queried port is a switch port, then ibportstate can be used to:
• disable, enable or reset the port
• validate the port’s link width and speed against the peer port
In case of multiple channel adapters (CAs) or multiple ports without a CA/
port being specified, a port is chosen by the utility according to the following 
criteria:
• The first ACTIVE port that is found.
• If not found, the first port that is UP (physical link state is LinkUp).
For further information, please refer to the tool’s man page.

ibqueryerrors The default behavior is to report the port error counters which exceed a 
threshold for each port in the fabric. The default threshold is zero (0). Error 
fields can also be suppressed entirely.
In addition to reporting errors on every port, ibqueryerrors can report the port 
transmit and receive data as well as report full link information to the remote 
port if available.
For further information, please refer to the tool’s man page.

ibroute Uses SMPs to display the forwarding tables—unicast (LinearForwarding-
Table or LFT) or multicast (MulticastForwardingTable or MFT)—for the 
specified switch LID and the optional lid (mlid) range. The default range is all 
valid entries in the range 1 to FDBTop.
For further information, please refer to the tool’s man page.

Table 7 - Diagnostic Utilities  (Sheet 4 of 6)

Utility Description
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ibstat ibstat is a binary which displays basic information obtained from the local IB 
driver. Output includes LID, SMLID, port state, link width active, and port 
physical state.
For further information, please refer to the tool’s man page.

ibstatus Displays basic information obtained from the local InfiniBand driver. Output 
includes LID, SMLID, port state, port physical state, port width and port rate.
For further information, please refer to the tool’s man page.

ibswitches Traces the InfiniBand subnet topology or uses an already saved topology file 
to extract the InfiniBand switches.
For further information, please refer to the tool’s man page.

ibsysstat Uses vendor mads to validate connectivity between InfiniBand nodes and 
obtain other information about the InfiniBand node. ibsysstat is run as client/
server. The default is to run as client.
For further information, please refer to the tool’s man page.

ibtopodiff Compares a topology file and a discovered listing ofsubnet.lst/ibdiagnet.lst 
and reports missmatches.
Two different algorithms provided:
• Using the -e option is more suitible for MANY mismatches it applies less 

heuristics and provide details about the match
• Providing the -s, -p and -g starts a detailed heuristics that should be used 

when only small number of changes are expected
For further information, please refer to the tool’s man page.

ibtracert Uses SMPs to trace the path from a source GID/LID to a destination GID/
LID. Each hop along the path is displayed until the destination is reached or a 
hop does not respond. By using the -m option, multicast path tracing can be 
performed between source and destination nodes.
For further information, please refer to the tool’s man page.

ibv_asyncwatch Display asynchronous events forwarded to userspace for an InfiniBand 
device.
For further information, please refer to the tool’s man page.

ibv_devices Lists InfiniBand devices available for use from userspace, including node 
GUIDs.
For further information, please refer to the tool’s man page.

ibv_devinfo Queries InfiniBand devices and prints about them information that is avail-
able for use from userspace.
For further information, please refer to the tool’s man page.

Table 7 - Diagnostic Utilities  (Sheet 5 of 6)

Utility Description
Mellanox Technologies 197



InfiniBand Fabric UtilitiesRev 2.3-1.0.1
4.4.1 Link Level Retransmission (LLR) in FDR Links
With the introduction of FDR 56 Gbps technology, Mellanox enabled a proprietary technology 
called LLR (Link Level Retransmission) to improve the reliability of FDR links.
This proprietary LLR technology adds additional CRC checking to the data stream and retrans-
mits portions of packets with CRC errors at the local link level. Customers should be aware of 
the following facts associated with LLR technology:
• Traditional methods of checking the link health can be masked because the LLR tech-

nology automatically fixes errors. The traditional IB symbol error counter will show no 
errors when LLR is active.

• Latency of the fabric can be impacted slightly due to LLR retransmissions. Traditional 
IB performance utilities can be used to monitor any latency impact.

mstflint Queries and burns a binary firmware-image file on non-volatile (Flash) mem-
ories of Mellanox InfiniBand and Ethernet network adapters. The tool 
requires root privileges for Flash access.
To run mstflint, you must know the device location on the PCI bus.
Note: If you purchased a standard Mellanox Technologies network adapter 
card, please download the firmware image from www.mellanox.com > Sup-
port > Firmware Download. If you purchased a non-standard card from a 
vendor other than Mellanox Technologies, please contact your vendor.
For further information, please refer to the tool’s man page.

perfquery Queries InfiniBand ports’ performance and error counters. Optionally, it dis-
plays aggregated counters for all ports of a node. It can also reset counters 
after reading them or simply reset them.
For further information, please refer to the tool’s man page.

saquery Issues the selected SA query. Node records are queried by default.
For further information, please refer to the tool’s man page.

sminfo Issues and dumps the output of an sminfo query in human readable format. 
The target SM is the one listed in the local port info or the SM specified by the 
optional SM LID or by the SM direct routed path.
Note: Using sminfo for any purpose other than a simple query might result in 
a malfunction of the target SM.
For further information, please refer to the tool’s man page.

smparquery Sends SMP query for adaptive routing and private LFT features.
For further information, please refer to the tool’s man page.

smpdump A general purpose SMP utility which gets SM attributes from a specified 
SMA. The result is dumped in hex by default.
For further information, please refer to the tool’s man page.

smpquery Provides a basic subset of standard SMP queries to query Subnet management 
attributes such as node info, node description, switch info, and port info.
For further information, please refer to the tool’s man page.

Table 7 - Diagnostic Utilities  (Sheet 6 of 6)
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• Bandwidth of links can be reduced if cable performance degrades and LLR retransmis-
sions become too numerous. Traditional IB bandwidth performance utilities can be used 
to monitor any bandwidth impact.

Due to these factors, an LLR retransmission rate counter has been added to the ibdiagnet utility 
that can give end users an indication of the link health.
 To monitor LLR retransmission rate:
1. Run ibdiagnet, no special flags required.
2. If the LLR retransmission rate limit is exceeded it will print to the screen.
3. The default limit is set to 500 and requires further investigation if exceeded.
4. The LLR retransmission rate is reflected in the results file /var/tmp/ibdiagnet2/ibdiagnet2.pm.
The default value of 500 retransmissions/sec has been determined by Mellanox based on the 
extensive simulations and testing. Links exhibiting a lower LLR retransmission rate should not 
raise special concern. 

4.5 Performance Utilities
The performance utilities described in this chapter are intended to be used as a performance 
micro-benchmark.

Table 8 - Diagnostic Utilities  (Sheet 1 of 3)

Utility Description

ib_atomic_bw Calculates the BW of RDMA Atomic transactions between a pair of 
machines. One acts as a server and the other as a client. The client RDMA 
sends atomic operation to the server and calculate the BW by sampling the 
CPU each time it receive a successful completion. The test supports features 
such as Bidirectional, in which they both RDMA atomic to each other at the 
same time, change of MTU size, tx size, number of iteration, message size 
and more. Using the "-a" flag provides results for all message sizes.
For further information, please refer to the tool’s man page.

ib_atomic_lat Calculates the latency of RDMA Atomic transaction of message_size 
between a pair of machines. One acts as a server and the other as a client. 
The client sends RDMA atomic operation and sample the CPU clock when 
it receives a successful completion, in order to calculate latency.
For further information, please refer to the tool’s man page.

ib_read_bw Calculates the BW of RDMA read between a pair of machines. One acts as 
a server and the other as a client. The client RDMA reads the server mem-
ory and calculate the BW by sampling the CPU each time it receive a suc-
cessful completion. The test supports features such as Bidirectional, in 
which they both RDMA read from each other memory's at the same time, 
change of mtu size, tx size, number of iteration, message size and more. 
Read is available only in RC connection mode (as specified in IB spec).
For further information, please refer to the tool’s man page.
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ib_read_lat Calculates the latency of RDMA read operation of message_size between a 
pair of machines. One acts as a server and the other as a client. They per-
form a ping pong benchmark on which one side RDMA reads the memory 
of the other side only after the other side have read his memory. Each of the 
sides samples the CPU clock each time they read the other side memory , in 
order to calculate latency. Read is available only in RC connection mode (as 
specified in IB spec).
For further information, please refer to the tool’s man page.

ib_send_bw Calculates the BW of SEND between a pair of machines. One acts as a 
server and the other as a client. The server receive packets from the client 
and they both calculate the throughput of the operation. The test supports 
features such as Bidirectional, on which they both send and receive at the 
same time, change of mtu size, tx size, number of iteration, message size 
and more. Using the "-a" provides results for all message sizes.
For further information, please refer to the tool’s man page.

ib_send_lat Calculates the latency of sending a packet in message_size between a pair 
of machines. One acts as a server and the other as a client. They perform a 
ping pong benchmark on which you send packet only if you receive one. 
Each of the sides samples the CPU each time they receive a packet in order 
to calculate the latency. Using the "-a" provides results for all message 
sizes.
For further information, please refer to the tool’s man page.

ib_write_bw Calculates the BW of RDMA write between a pair of machines. One acts as 
a server and the other as a client. The client RDMA writes to the server 
memory and calculate the BW by sampling the CPU each time it receive a 
successful completion. The test supports features such as Bidirectional, in 
which they both RDMA write to each other at the same time, change of mtu 
size, tx size, number of iteration, message size and more. Using the "-a" flag 
provides results for all message sizes.
For further information, please refer to the tool’s man page.

ib_write_lat Calculates the latency of RDMA write operation of message_size between a 
pair of machines. One acts as a server and the other as a client. They per-
form a ping pong benchmark on which one side RDMA writes to the other 
side memory only after the other side wrote on his memory. Each of the 
sides samples the CPU clock each time they write to the other side memory, 
in order to calculate latency.
For further information, please refer to the tool’s man page.

raw_ethernet_bw Calculates the BW of SEND between a pair of machines. One acts as a 
server and the other as a client. The server receive packets from the client 
and they both calculate the throughput of the operation. The test supports 
features such as Bidirectional, on which they both send and receive at the 
same time, change of mtu size, tx size, number of iteration, message size 
and more. Using the "-a" provides results for all message sizes.
For further information, please refer to the tool’s man page.

Table 8 - Diagnostic Utilities  (Sheet 2 of 3)

Utility Description
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raw_ethernet_lat Calculates the latency of sending a packet in message_size between a pair 
of machines. One acts as a server and the other as a client. They perform a 
ping pong benchmark on which you send packet only if you receive one. 
Each of the sides samples the CPU each time they receive a packet in order 
to calculate the latency. Using the "-a" provides results for all message 
sizes.
For further information, please refer to the tool’s man page.

Table 8 - Diagnostic Utilities  (Sheet 3 of 3)

Utility Description
Mellanox Technologies 201



TroubleshootingRev 2.3-1.0.1
5 Troubleshooting
You may be able to easily resolve the issues described in this section. If a problem persists and 
you are unable to resolve it yourself please contact your Mellanox representative or Mellanox 
Support at support@mellanox.com.

5.1 General Related Issues

Table 9 - General Related Issues

Issue Cause Solution

The system panics when 
it is booted with a failed 
adapter installed.

Malfunction hardware com-
ponent

1. Remove the failed adapter.
2. Reboot the system. 

Mellanox adapter is not 
identified as a PCI 
device.

PCI slot or adapter PCI 
connector dysfunctionality

1. Run lspci. 
2. Reseat the adapter in its PCI slot or 

insert the adapter to a different PCI slot. 
If the PCI slot confirmed to be func-
tional, the adapter should be replaced.   

Mellanox adapters are 
not installed in the sys-
tem.

Misidentification of the 
Mellanox adapter installed

Run the command below and check 
Mellanox’s MAC to identify the Mella-
nox adapter installed. 
lspci | grep Mellanox' or 'lspci 
-d 15b3:
Mellanox MACs start with: 
00:02:C9:xx:xx:xx, 00:25:8B:xx:xx:xx 
or F4:52:14:xx:xx:xx"

5.2 Ethernet Related Issues

Table 10 - Ethernet Related Issues

Issue Cause Solution

No link. Misconfiguration of the 
switch port or using a cable 
not supporting link rate.

• Ensure the switch port is not down
• Ensure the switch port rate is config-

ured to the same rate as the adapter's 
port
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5.3 InfiniBand Related Issues

Table 11 - InfiniBand Related Issues

Issue Cause Solution

The following mes-
sages is logged after 
loading the driver: 
multicast join 
failed with status -
22

Trying to join a multicast 
group that does not exist or 
exceeding the number of 
multicast groups supported 
by the SM.

If this message is logged often, check 
for the multicast group's join require-
ments as the node might not meet them.
Note: If this message is logged after 
driver load, it may safely be ignored. 

Unable to stop the 
driver with the follow-
ing on screen message:
ERROR: Module <mod-
ule> is in use

An external application is 
using the reported module.

Manually unloading the module using 
the 'modprobe -r' command.

Logical link fails to 
come up while port logi-
cal state is Initializing.

The logical port state is in 
the Initializing state while 
pending the SM for the LID 
assignment. 

1. Verify an SM is running in the fabric.
Run 'sminfo' from any host connected 
to the fabric. 

2. If SM is not running, activate the SM on 
a node or on managed switch. 

Degraded performance 
is measured when hav-
ing a mixed rate envi-
ronment (10GbE, 
40GbE and 56GbE).

Sending traffic from a node 
with a higher rate to a node 
with lower rate.

Enable Flow Control on both switch's 
ports and nodes: 
• On the server side run:

ethtool -A <interface> rx on 
tx on

• On the switch side run the following 
command on the relevant interface: 
send on force and receive on 
force

No link with break-out 
cable.

Misuse of the break-out 
cable or misconfiguration 
of the switch's split ports

• Use supported ports on the switch 
with proper configuration. For fur-
ther information, please refer to the 
MLNX_OS User Manual.

• Make sure the QSFP break-out cable 
side is connected to the SwitchX.

Table 10 - Ethernet Related Issues

Issue Cause Solution
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5.4 InfiniBand/Ethernet Related Issues

Table 12 - InfiniBand/Ethernet Related Issues

Issue Cause Solution

Physical link fails to  
negotiate to maximum  
supported rate.

The adapter is running an 
outdated firmware.

Install the latest firmware on the 
adapter.

Physical link fails to 
come up while port 
physical state is Polling.

The cable is not connected 
to the port or the port on the 
other end of the cable is 
disabled.

• Ensure that the cable is connected on 
both ends or use a known working 
cable

• Check the status of the connected 
port using the ibportstate com-
mand and enable it if necessary

Physical link fails to 
come up while port 
physical state is Dis-
abled.

The port was manually dis-
abled.

Restart the driver:
/etc/init.d/openibd restart

InfiniBand utilities 
commands fail to find 
devices on the system. 
For example, the 
'ibv_devinfo' com-
mand fail with the fol-
lowing output: 
Failed to get IB 
devices list: Func-
tion not implemented

The InfiniBand utilities 
commands are invoked 
when the driver is not 
loaded.

Load the driver:
/etc/init.d/openibd start
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5.5 Installation Related Issues

Table 13 - Installation Related Issues

Issue Cause Solution

Driver installation fails. The install script may fail 
for the following reasons:
• Using an unsupported 

installation option
• Failed to uninstall the 

previous installation due 
to dependencies being 
used

• The operating system is 
not supported

• The kernel is not sup-
ported. You can run 
mlnx_add_kernel_suppo
rt.sh in order to to gener-
ate a MLNX_OFED 
package with drivers for 
the kernel

• Required packages for 
installing the driver are 
missing

• Missing kernel backport 
support for non sup-
ported kernel

• Use only supported installation 
options. The full list of installation 
options case be displayed on screen 
by using: mlnxofedinstall --h

• Run 'rpm -e' to display a list of all 
RPMs and then manually uninstall 
them if the preliminary uninstallation 
failed due to dependencies being 
used.

• Use a supported operating system 
and kernel

• Manually install the missing pack-
ages listed on screen by the installa-
tion script if the installation failed 
due to missing pre-requisites.

After driver installa-
tion, the openibd service 
fail to start. This mes-
sage is logged by the 
driver: Unknown symbol

The driver was installed on 
top of an existing In-box 
driver.

1. Uninstall the MLNX_OFED driver.
ofed_uninstall.sh

2. Reboot the server.
3. Search for any remaining installed 

driver.
locate mlx4_ib.ko
locate mlx4_en.ko
locate mlx4_core 
If found, move them to the /tmp direc-
tory from the current directory

4. Re-install the MLNX_OFED driver.
5. Restart the openibd service.
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5.6 Performance Related Issues

Table 14 - Performance Related Issues

Issue Cause Solution

The driver works but the 
transmit and/or receive 
data rates are not opti-
mal.

These recommendations may assist with 
gaining immediate improvement:
1. Confirm PCI link negotiated uses its 

maximum capability
2. Stop the IRQ Balancer service.

/etc/init.d/irq_balancer stop
3. Start mlnx_affinity service.

mlnx_affinity start
For best performance practices, please 
refer to the  "Performance Tuning Guide 
for Mellanox Network Adapters" 
(www.mellanox.com > Products > 
InfiniBand/VPI Drivers > Linux SW/
Drivers).

5.7 SR-IOV Related Issues

Table 15 - SR-IOV Related Issues

Issue Cause Solution

Failed to enable  
SR-IOV. 
The following message 
is reported in dmesg: 
mlx4_core 
0000:xx:xx.0: Failed 
to enable SR-IOV, 
continuing without 
SR-IOV (err = -22)

The number of VFs config-
ured in the driver is higher 
than configured in the firm-
ware. 

1. Check the firmware SR-IOV configura-
tion, run the mlxconfig tool.

2. Set the same number of VFs for the 
driver.

Failed to enable  
SR-IOV. 
The following message 
is reported in dmesg: 
mlx4_core 
0000:xx:xx.0: Failed 
to enable SR-IOV, 
continuing without 
SR-IOV (err = -12)

SR-IOV is disabled in the 
BIOS. 

Check that the SR-IOV is enabled in the 
BIOS (see Section 3.4.1.2, “Setting Up 
SR-IOV”, on page 171).
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5.8 PXE (FlexBoot) Related Issues

Table 16 - PXE (FlexBoot) Related Issues

Issue Cause Solution

PXE boot timeout. The 'always-broadcast' 
option is disabled.

Enable 'always-broadcast'. 
For the complete procedure, please refer 
to 'Linux PXE User Manual'

PXE InfiniBand link 
fails with the following 
messages although the 
DHCP request was sent: 
Initializing and The 
socket is not connected. 

Either the SM is not run-
ning in the fabric or the SM 
default multicast group was 
created with non default 
settings.

1. Activate the SM on a node or on man-
aged switch. 

2. Check in the SM partitions.conf 
file that the default partition rate and 
MTU setting are SDR and 2K, respec-
tively.
The PXE is establishing by default an 
SDR link set with an MTU of 2K. If the 
default multicast group opened with dif-
ferent rate and/or MTU, the SM will 
deny the PXE request to join. 

Mellanox adapter is not 
identified as a boot 
device.

The expansion ROM image 
is not installed on the 
adapter. or the server's 
BIOS is not configured to 
work on Legacy mode

1. Run a flint query to display the expan-
sion ROM information.
For example:  "flint -d /dev/mst/
mt4099_pci_cr0 q" and look for the 
"Rom info:" line.
For further information on how to burn 
the ROM, please refer to MFT User 
Manual.

2. Make sure the BIOS is configured to 
work in Legacy mode if the adapter's 
firmware does not include a UEFI 
image.

When assigning a VF to 
a VM the following 
message is reported on 
the screen: 
"PCI-assgine: error: 
requires KVM sup-
port"

SR-IOV and virtualization 
are not enabled in the 
BIOS.

1. Verify they are both enabled in the BIOS
2. Add to the GRUB configuration file to 

the following kernel parameter: 
"intel_immun=on" 
(see Section 3.4.1.2, “Setting Up SR-
IOV”, on page 171).

Table 15 - SR-IOV Related Issues

Issue Cause Solution
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5.9 RDMA Related Issues

Table 17 - RDMA Related Issues

Issue Cause Solution

Infiniband-diags tests, 
such as 'ib_write_bw', 
fail between systems 
with different driver 
releases.

When running a test 
between 2 systems in the 
fabric with different  
Infiniband-diags packages 
installed.

Run the test using the same perftest 
RPM on both systems.
Mellanox Technologies208


	Mellanox OFED for Linux User Manual
	Table of Contents
	List of Figures
	List of Tables
	Document Revision History
	About this Manual
	Intended Audience
	Glossary
	Related Documentation
	Support and Updates Webpage

	1 Introduction
	1.1 Overview
	1.2 Stack Architecture
	1.2.1 mlx4 VPI Driver
	1.2.2 mlx5 Driver
	1.2.3 Mid-layer Core
	1.2.4 ULPs
	1.2.5 MPI
	1.2.6 InfiniBand Subnet Manager
	1.2.7 Diagnostic Utilities
	1.2.8 Mellanox Firmware Tools

	1.3 Mellanox OFED Package
	1.3.1 ISO Image
	1.3.2 Software Components
	1.3.3 Firmware
	1.3.4 Directory Structure

	1.4 Module Parameters
	1.4.1 mlx4 Module Parameters
	1.4.1.1 mlx4_ib Parameters
	1.4.1.2 mlx4_core Parameters
	1.4.1.3 mlx4_en Parameters

	1.4.2 mlx5 Module Parameters

	1.5 Device Capabilities

	2 Installation
	2.1 Hardware and Software Requirements
	2.2 Downloading Mellanox OFED
	2.3 Installing Mellanox OFED
	2.3.1 Installation Procedure
	2.3.2 Installation Results
	2.3.3 Installation Logging
	2.3.4 openibd Script
	2.3.5 mlnxofedinstall Return Codes

	2.4 Uninstalling Mellanox OFED
	2.5 Installing MLNX_OFED using YUM
	2.5.1 Setting up MLNX_OFED YUM Repository
	2.5.2 Installing MLNX_OFED using the YUM Tool
	2.5.3 Uninstalling Mellanox OFED using the YUM Tool

	2.6 Installing MLNX_OFED using apt-get
	2.6.1 Setting up MLNX_OFED apt-get Repository
	2.6.2 Installing MLNX_OFED using the apt-get Tool
	2.6.3 Uninstalling Mellanox OFED using the apt-get Tool

	2.7 Updating Firmware After Installation
	2.8 UEFI Secure Boot
	2.8.1 Enrolling Mellanox's x.509 Public Key On your Systems
	2.8.2 Removing Signature from kernel Modules

	2.9 Performance Tuning

	3 Features Overview and Configuration
	3.1 Ethernet Network
	3.1.1 Interface
	3.1.1.1 Port Type Management
	3.1.1.2 Counters
	3.1.1.3 Persistent Naming

	3.1.2 Quality of Service (QoS)
	3.1.2.1 Mapping Traffic to Traffic Classes
	3.1.2.2 Plain Ethernet Quality of Service Mapping
	3.1.2.3 RoCE Quality of Service Mapping
	3.1.2.4 Raw Ethernet QP Quality of Service Mapping
	3.1.2.5 Map Priorities with tc_wrap.py/mlnx_qos
	3.1.2.6 Quality of Service Properties
	3.1.2.7 Quality of Service Tools

	3.1.3 Quantized Congestion Notification (QCN)
	3.1.3.1 QCN Tool - mlnx_qcn

	3.1.4 Ethtool
	3.1.5 Checksum Offload
	3.1.6 RDMA over Converged Ethernet (RoCE)
	3.1.6.1 IP Routable RoCE
	3.1.6.2 RoCE Configuration
	3.1.6.2.1 Prerequisites
	3.1.6.2.2 Configuring SwitchX® Based Switch System
	3.1.6.2.3 Configuring the RoCE Mode
	3.1.6.2.4 Configuring DAPL over RoCE
	3.1.6.2.5 Installing and Loading the Driver
	3.1.6.2.6 Associating InfiniBand Ports to Ethernet Ports
	3.1.6.2.7 Configuring an IP Address to the mlx4_en Interface
	3.1.6.2.8 Inspecting the GID Table
	3.1.6.2.9 Running an - ibv_rc_pingpong Test
	3.1.6.2.10 Adding VLANs
	3.1.6.2.11 Running an - ibv_rc_pingpong Test on the VLAN
	3.1.6.2.12 Defining Ethernet Priority (PCP in 802.1q Headers)
	3.1.6.2.13 Using rdma_cm Tests

	3.1.6.3 Type Of Service (TOS)

	3.1.7 Explicit Congestion Notification (ECN)
	3.1.7.1 Enabling ECN
	3.1.7.2 Various ECN Paths

	3.1.8 Power Management
	3.1.9 RSS Hash Function
	3.1.10 Time-Stamping
	3.1.10.1 Time-Stamping Service
	3.1.10.2 RoCE Time Stamping

	3.1.11 Flow Steering
	3.1.11.1 Enable/Disable Flow Steering
	3.1.11.2 Flow Steering Support
	3.1.11.3 A0 Static Device Managed Flow Steering
	3.1.11.4 Flow Domains and Priorities


	3.2 InfiniBand Network
	3.2.1 Interface
	3.2.1.1 Port Type Management

	3.2.2 OpenSM
	3.2.2.1 opensm
	3.2.2.1.1 Environment Variables
	3.2.2.1.2 Signaling
	3.2.2.1.3 Running opensm
	3.2.2.1.4 Running OpenSM As Daemon

	3.2.2.2 osmtest
	3.2.2.2.1 Running osmtest

	3.2.2.3 Partitions
	3.2.2.3.1 File Format

	3.2.2.4 Effect of Topology Changes
	3.2.2.5 Routing Algorithms
	3.2.2.5.1 Min Hop Algorithm
	3.2.2.5.2 UPDN Algorithm
	3.2.2.5.3 Fat-tree Routing Algorithm
	3.2.2.5.4 LASH Routing Algorithm
	3.2.2.5.5 DOR Routing Algorithm
	3.2.2.5.6 Torus-2QoS Routing Algorithm
	3.2.2.5.7 Routing Chains

	3.2.2.6 Quality of Service Management in OpenSM
	3.2.2.6.1 IPoIB
	3.2.2.6.2 SDP
	3.2.2.6.3 RDS
	3.2.2.6.4 SRP
	3.2.2.6.5 MPI

	3.2.2.7 QoS Configuration Examples
	3.2.2.7.1 Enabling Adaptive Routing
	3.2.2.7.2 Disabling Adaptive Routing
	3.2.2.7.3 General AR Manager Options

	3.2.2.8 Congestion Control
	3.2.2.8.1 Congestion Control Manager Options File


	3.2.3 Quality of Service (QoS)
	3.2.3.1 QoS Architecture
	3.2.3.2 Supported Policy
	3.2.3.3 CMA Features
	3.2.3.4 OpenSM Features

	3.2.4 Secure Host
	3.2.4.1 Secure Mode Operation
	3.2.4.1.1 Enabling/Disabling Hardware Access
	3.2.4.1.2 Burning New Firmware when Secure-Mode is Active
	3.2.4.1.3 Permanently Disabling Secure-Mode
	3.2.4.1.4 Checking if Hardware Access is Active
	3.2.4.1.5 Checking if the SMP Firewall is Active


	3.2.5 Upper Layer Protocols
	3.2.5.1 IP over InfiniBand (IPoIB)
	3.2.5.1.1 IPoIB Mode Setting
	3.2.5.1.2 IPoIB Configuration
	3.2.5.1.3 Subinterfaces
	3.2.5.1.4 Verifying IPoIB Functionality
	3.2.5.1.5 Bonding IPoIB

	3.2.5.2 Ethernet Tunneling Over IPoIB Driver (eIPoIB)
	3.2.5.2.1 Enabling the eIPoIB Driver
	3.2.5.2.2 Configuring the Ethernet Tunneling Over IPoIB Driver
	3.2.5.2.3 VLAN Configuration Over an eIPoIB Interface
	3.2.5.2.4 Setting Performance Tuning

	3.2.5.3 Ethernet over IB (EoIB)
	3.2.5.3.1 Ethernet over IB Topology
	3.2.5.3.2 EoIB Configuration
	3.2.5.3.3 Retrieving EoIB Information
	3.2.5.3.4 Advanced EoIB Settings


	3.2.6 Advanced Transport
	3.2.6.1 Atomic Operations
	3.2.6.1.1 Atomic Operations in mlx5 Driver
	3.2.6.1.2 Enhanced Atomic Operations

	3.2.6.2 XRC - eXtended Reliable Connected Transport Service for InfiniBand
	3.2.6.3 Dynamically Connected Transport (DCT)

	3.2.7 Optimized Memory Access
	3.2.7.1 Contiguous Pages
	3.2.7.2 Shared Memory Region
	3.2.7.3 Memory Region Re-registration
	3.2.7.4 Memory Window
	3.2.7.5 User-Mode Memory Registration (UMR)
	3.2.7.6 On-Demand-Paging (ODP)
	3.2.7.6.1 Query Capabilities
	3.2.7.6.2 Registering ODP Explicit MR
	3.2.7.6.3 Registering ODP Implicit MR
	3.2.7.6.4 De-registering ODP MR
	3.2.7.6.5 Pre-fetching Verb
	3.2.7.6.6 ODP Statistics

	3.2.7.7 Inline-Receive
	3.2.7.7.1 Querying Inline-Receive Capability
	3.2.7.7.2 Activating Inline-Receive
	3.2.7.7.3 Query Capabilities
	3.2.7.7.4 Allocating Memory Window
	3.2.7.7.5 Binding Memory Windows
	3.2.7.7.6 Invalidating Memory Window
	3.2.7.7.7 Deallocating Memory Window


	3.2.8 PeerDirect

	3.3 Storage Protocols
	3.3.1 SCSI RDMA Protocol (SRP)
	3.3.1.1 SRP Initiator
	3.3.1.1.1 SRP Module Parameters
	3.3.1.1.2 SRP Remote Ports Parameters
	3.3.1.1.3 SRP sysfs Parameters
	3.3.1.1.4 ibsrpdm
	3.3.1.1.5 srpd
	3.3.1.1.6 srp_daemon
	3.3.1.1.7 Operation
	3.3.1.1.8 Manual Activation of High Availability
	3.3.1.1.9 Automatic Activation of High Availability


	3.3.2 iSCSI Extensions for RDMA (iSER)
	3.3.2.1 iSER Initiator

	3.3.3 Lustre

	3.4 Virtualization
	3.4.1 Single Root IO Virtualization (SR-IOV)
	3.4.1.1 System Requirements
	3.4.1.2 Setting Up SR-IOV
	3.4.1.3 Enabling SR-IOV and Para Virtualization on the Same Setup
	3.4.1.4 Assigning a Virtual Function to a Virtual Machine
	3.4.1.5 Uninstalling SR-IOV Driver
	3.4.1.6 Configuring Pkeys and GUIDs under SR-IOV
	3.4.1.6.1 SR-IOV sysfs Administration Interfaces on the Hypervisor
	3.4.1.6.2 Configuring an Alias GUID (under ports/<n>/admin_guids)
	3.4.1.6.3 Multi-GUID Support in InfiniBand
	3.4.1.6.4 Partitioning IPoIB Communication using PKeys
	3.4.1.6.5 VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)
	3.4.1.6.6 Additional Ethernet VF Configuration Options
	3.4.1.6.7 Mapping VFs to Ports
	3.4.1.6.8 Mapping VFs to Ports using the mlnx_get_vfs.pl tool
	3.4.1.6.9 RoCE Support

	3.4.1.7 Running Network Diagnostic Tools on a Virtual Function
	3.4.1.8 Virtual Guest Tagging (VGT+)
	3.4.1.8.1 Configuring VGT+


	3.4.2 VXLAN
	3.4.2.1 Prerequisites
	3.4.2.2 Enabling VXLAN
	3.4.2.3 Important Notes


	3.5 Resiliency
	3.5.1 Reset Flow
	3.5.1.1 Kernel ULPs
	3.5.1.2 User Space Applications (IB/RoCE)
	3.5.1.3 SR-IOV
	3.5.1.4 Forcing the VF to Reset
	3.5.1.5 Advanced Error Reporting (AER)


	3.6 HPC-X™

	4 InfiniBand Fabric Utilities
	4.1 Common Configuration, Interface and Addressing
	4.1.1 Topology File (Optional)

	4.2 InfiniBand Interface Definition
	4.3 Addressing
	4.4 Diagnostic Utilities
	4.4.1 Link Level Retransmission (LLR) in FDR Links

	4.5 Performance Utilities

	5 Troubleshooting
	5.1 General Related Issues
	5.2 Ethernet Related Issues
	5.3 InfiniBand Related Issues
	5.4 InfiniBand/Ethernet Related Issues
	5.5 Installation Related Issues
	5.6 Performance Related Issues
	5.7 SR-IOV Related Issues
	5.8 PXE (FlexBoot) Related Issues
	5.9 RDMA Related Issues



